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tWe des
ribe new appli
ations of the level set approa
h for following the evolution of 
omplex interfa
es.This approa
h is based on solving an initial value partial di�erential equation for a propagating levelset fun
tion, using te
hniques borrowed from hyperboli
 
onservation laws. Topologi
al 
hanges, 
ornerand 
usp development, and a

urate determination of geometri
 properties su
h as 
urvature and normaldire
tion are naturally obtained in this setting. In this paper, we review some re
ent work, in
ludingfast level set methods, extensions to multiple 
uid interfa
es, generation of 
omplex interior and exteriorbody-�tted grids, and appli
ations to problems in 
ombustion and material s
ien
e.1 Introdu
tionIn this paper, we review some re
ent work whi
h extends the 
apabilities of level set methods for tra
kingthe evolution of 
omplex interfa
es, and summarize some new re
ent appli
ations of these te
hniques. Levelset methods, introdu
ed by Osher and Sethian [25℄, o�er highly robust and a

urate methods for tra
kinginterfa
es moving under 
omplex motions. Their major virtue is that they naturally 
onstru
t the funda-mental weak solution to surfa
e propagation posed by Sethian [27, 28℄. They work in any number of spa
edimensions, handle topologi
al merging and breaking naturally, and are easy to program. They approximatethe equations of motion for the underlying propagating surfa
e, whi
h resemble Hamilton-Ja
obi equationswith paraboli
 right-hand sides. The 
entral mathemati
al idea is to view the moving front as a parti
ularlevel set of a higher dimensional fun
tion. In this setting, sharp gradients and 
usps 
an form easily, and thee�e
ts of 
urvature may be easily in
orporated. The key numeri
al idea is to borrow the te
hnology from thenumeri
al solution of hyperboli
 
onservation laws and transfer these ideas to the Hamilton-Ja
obi setting,whi
h then guarantees that the 
orre
t entropy satisfying solution will be obtained.�Supported in part by the Applied Mathemati
s Subprogram of the OÆ
e of Energy Resear
h under 
ontra
t DE-AC03-76SF00098, and the National S
ien
e Foundation and DARPA under grant DMS-8919074.1



A variety of numeri
al algorithms are available to advan
e propagating interfa
es in su
h areas as CFD,dendriti
 growth and solidi�
ation, 
ame/
ombustion models, and material pro
essing. Roughly speaking,they fall into three general 
ategories:� Marker/String Methods: In these methods, a dis
rete parameterized version of the interfa
e boundaryis used. In two dimensions, marker parti
les are used; in three dimensions, a nodal triangularizationof the interfa
e is often developed. The positions of the nodes are then updated by determining frontinformation about the normals and 
urvature from the marker representation. Su
h representations
an be quite a

urate, however, limitations exist for 
omplex motions. To begin, if 
orners and 
uspsdevelop in the evolving front, markers usually form \swallowtail" solutions whi
h must be removedthrough delooping te
hniques whi
h attempt to enfor
e an entropy 
ondition inherent in su
h motion(see [28℄). Se
ond, topologi
al 
hanges are diÆ
ult to handle; when regions merge, some markersmust be removed. Third, signi�
ant instabilities in the front 
an result, sin
e the underlying markerparti
le motions represent a weakly ill-posed initial value problem (see [25℄). Finally, extensions ofsu
h methods to three dimensions require additional work.� Cell-Based Methods: In these methods, the 
omputational domain is divided into a set of 
ells whi
h
ontain \volume fra
tions" These volume fra
tions are numbers between 0 and 1, and represent thefra
tion of ea
h 
ell 
ontaining the physi
al material. At any time, the front 
an be re
onstru
ted fromthese volume fra
tions. Advantages of su
h te
hniques in
lude the ability to easily handle topologi
al
hanges, adaptive mesh methods, and extensions to three dimensions. However, determination ofgeometri
 quantities su
h as normals and 
urvature 
an be ina

urate.� Chara
teristi
 Methods: In these methods, \ray-tra
e"-like te
hniques are used. The 
hara
teristi
equations for the propagating interfa
e are used, and the entropy 
ondition at forming 
orners (see[28℄) is formally enfor
ed by 
onstru
ting the envelope of the evolving 
hara
teristi
s. Su
h methodshandle the looping problems more naturally, but may be 
omplex in three-dimensions and requireadaptive adding and removing rays, whi
h 
an 
ause instabilities and/or oversmoothing.As dis
ussed above, level set methods are powerful te
hniques for tra
king interfa
es that naturally handle
orners and 
usps that develop, 
orre
tly develop the 
orre
t weak solution that invokes the entropy 
onditionintrodu
ed in [28℄, and extend in a straightforward manner to three dimensions. Sin
e their introdu
tion,in [25℄, the level set approa
h has been used in a wide 
olle
tion of problems involving moving interfa
es.Some of these appli
ations in
lude the generation of minimal surfa
es [10℄, singularities and geodesi
s inmoving 
urves and surfa
es in [12℄, 
ame propagation [26, 36℄, 
uid interfa
es [6, 9℄, 
rystal growth anddendriti
 solidi�
ation [33℄, dete
tion of self-similar surfa
es [11℄, et
hing, deposition and lithography [2, 3℄,and shape re
onstru
tion [23℄. Extensions of the basi
 te
hnique in
lude fast methods in [1℄ and methodsfor multiple 
uid interfa
es [34℄. The fundamental Eulerian perspe
tive presented by this approa
h has sin
ebeen adopted in many theoreti
al analyses of mean 
urvature 
ow, see in parti
ular [14, 8℄, and related workin [4, 13, 15, 16, 19, 21℄.In this paper, we dis
uss some of these appli
ations, and re
ent work whi
h extends the level set methodto in
rease its power and versatility. In parti
ular, we review work on the development of fast methods,methods for multiple interfa
es and triple points, and fast methods for reinitialization whi
h may be requiredin some 
omplex 
ases. In the appli
ations domain, we dis
uss the implementation of the level set methods2



for propagating interfa
es applied to 
rystal growth, 
ame stability and propagation, grid generation, andmi
rofabri
ation problems in et
hing, deposition, and photolithography.2 Fundamentals of the Level Set Method: Numeri
al Algorithmsfor Propagating FrontsThe fundamental aspe
ts of front propagation in our 
ontext 
an be illustrated as follows. Let 
(0) be asmooth, 
losed initial 
urve in R2, and let 
(t) be the one{parameter family of 
urves generated by moving
(0) along its normal ve
tor �eld with speed F (K). Here, F (K) is a given s
alar fun
tion of the 
urvatureK. Thus, n � xt = F (K), where x is the position ve
tor of the 
urve, t is time, and n is the unit normal tothe 
urve. It 
an be shown that a 
urve 
ollapsing under its 
urvature shrinks to a 
ir
le, see [17, 18, 20℄.Consider a speed fun
tion of the form 1 � �K, where � is a 
onstant. An evolution equation for the
urvature K, see [28℄, is given by Kt = �K�� + �K3 �K2 (1)where we have taken the se
ond derivative of the 
urvature K with respe
t to ar
length �. This is area
tion-di�usion equation; the drive toward singularities due to the rea
tion term (�K3 �K2) is balan
edby the smoothing e�e
t of the di�usion term (�K��). Indeed, with � = 0, we have a pure rea
tion equationKt = �K2. In this 
ase, the solution is K(s; t) = K(s; 0)=(1 + tK(s; 0)), whi
h is singular in �nite t if theinitial 
urvature is anywhere negative. Thus, 
orners 
an form in the moving 
urve when � = 0.As an example, 
onsider the periodi
 initial 
osine 
urve
(0) = (�s; [1 + 
os 2�s℄=2) (2)propagating with speed F (K) = 1 � �K, � > 0. As the front moves, the troughs at s = n + 1=2; n =0;�1;�2; :::: are sharpened by the negative rea
tion term (be
ause K < 0 at su
h points) and smoothed bythe positive di�usion term (see Figure 1a). For � > 0, it 
an be shown (see [28, 25℄) that the moving frontstays C1.On the other hand, for � = 0, the front develops a sharp 
orner in �nite time as dis
ussed above. Ingeneral, it is not 
lear how to 
onstru
t the normal at the 
orner and 
ontinue the evolution, sin
e thederivative is not de�ned there. One possibility is the \swallowtail" solution formed by letting the front passthrough itself (see Figure 1b). However, from a geometri
al argument it seems 
lear that the front at timet should 
onsist of only the set of all points lo
ated a distan
e t from the initial 
urve. (This is known asthe Huygens prin
iple 
onstru
tion, see [28℄). Roughly speaking, we want to remove the \tail" from the\swallowtail". In Figure 1
, we show this alternate weak solution. Another way to 
hara
terize this weaksolution is through the following \entropy 
ondition" posed by Sethian (see [28℄): If the front is viewed as aburning 
ame, then on
e a parti
le is burnt it stays burnt. Careful adheren
e to this stipulation produ
es theHuygens prin
iple 
onstru
tion. Furthermore, this physi
ally reasonable weak solution is the formal limit ofthe smooth solutions � > 0 as the 
urvature term vanishes, (see [28℄).As further illustration, we 
onsider the 
ase of a V-shaped front propagating normal to itself with unitspeed (F = 1). In [27℄, the link between this motion and hyperboli
 
onservation laws is explained. Ifthe point of the front is downwards; as the moves inwards with unit speed, a sho
k develops as the frontpin
hes o�, and an entropy 
ondition is required to sele
t the 
orre
t solution to stop the solution from beingdouble-valued and to produ
e the limit of the vis
ous 
ase. Conversely, if the point of the front is upwards;3



F = 1:� 0:25K Swallowtail(F = 1:0) Entropy Satisfying(F = 1:0)Fig:1a: F ig:1b F ig:1
Figure 1: Propagating Cosine Curve.in this 
ase the unit normal speed results in a rarefa
tion fan whi
h 
onne
ts the left state with slope +1 tothe right state whi
h has slope �1. Extensive dis
ussion of the role of sho
ks and rarefa
tions in propagatingfronts may be found in [27℄.The key to 
onstru
ting numeri
al s
hemes whi
h adhere to both this entropy 
ondition and rarefa
tionstru
ture 
omes from the link between propagating fronts and hyperboli
 
onservation laws. Consider theinitial front given by the graph of f(x), with f and f 0 periodi
 on [0; 1℄, and suppose that the propagatingfront remains a fun
tion for all time. Let � be the height of the propagating fun
tion at time t, thus�(x; 0) = f(x). The normal at (x; �) is (1; �x), and the equation of motion be
omes �t = F (K)(1 + �2x)1=2.Using the speed fun
tion F (K) = 1� �K and the formula K = ��xx=(1 + �2x)3=2, we get�t � (1 + �2x)1=2 = � �xx1 + �2x (3)Di�erentiating both sides of this equation yields an evolution equation for the slope u = d�=dx of thepropagating front, namely ut + [�(1 + u2)1=2℄x = �[ ux1 + u2 ℄x: (4)Thus, the derivative of the Hamilton-Ja
obi equation with paraboli
 right-hand-side for the 
hanging height� is a vis
ous hyperboli
 
onservation law for the propagating slope u (see [30℄). Our entropy 
ondition isin fa
t equivalent to the one for propagating sho
ks in hyperboli
 
onservation laws. Thus, we exploit thenumeri
al te
hnology from hyperboli
 
onservation laws to build 
onsistent, upwind s
hemes whi
h sele
tthe 
orre
t entropy 
onditions. For details, see [25, 29℄.Our goal then is to 
hoose an appropriate speed fun
tion that yields front motion away from the bodythat remains smooth for all time, and thus 
an a
t to de�ne one set of body-�t 
oordinate lines. Before doingso, we must extend the above ideas to in
lude propagating fronts whi
h are not easily written as fun
tions.This is the level set idea introdu
ed by Osher and Sethian [25℄, whi
h we now des
ribe.4



Given a moving 
losed hypersurfa
e �(t), that is, �(t = 0) : [0;1)! RN , we wish to produ
e an Eulerianformulation for the motion of the hypersurfa
e propagating along its normal dire
tion with speed F , whereF 
an be a fun
tion of various arguments, in
luding the 
urvature, normal dire
tion, et
. The main idea isto embed this propagating interfa
e as the zero level set of a higher dimensional fun
tion �. Let �(x; t = 0),where x 2 RN be de�ned by �(x; t = 0) = �d (5)where d is the distan
e from x to �(t = 0), and the plus (minus) sign is 
hosen if the point x is outside(inside) the initial hypersurfa
e �(t = 0). Thus, we have an initial fun
tion �(x; t = 0) : RN ! R with theproperty that �(t = 0) = (xj�(x; t= 0) = 0) (6)Our goal is to now produ
e an equation for the evolving fun
tion �(x; t) whi
h 
ontains the embedded motionof �(t) as the level set � = 0. Let x(t); t 2 [0;1) be the path of a point on the propagating front. That is,x(t = 0) is a point on the initial front �(t = 0), and xt = F (x(t)) with the ve
tor xt normal to the front atx(t). Sin
e the evolving fun
tion � is always zero on the propagating hypersurfa
e, we must have�(x(t); t) = 0 (7)By the 
hain rule, �t +r�(x(t; t)) � x0(t) = 0 (8)Sin
e F already gives the speed in the outward normal dire
tion, then x0(t) � n = F where n = r�=jr�j.Thus, we then have the evolution equation for �, namely�t + F jr�j= 0 (9)�(x; t = 0) given (10)We refer to this as a Hamilton-Ja
obi \type" equation be
ause, for 
ertain forms of the speed fun
tion F ,we obtain the standard Hamilton-Ja
obi equation.In Figure 2, (taken from [31℄), we show the outward propagation of an initial 
urve and the a

ompanyingmotion of the level set fun
tion �. In Figure 2a, we show the initial 
ir
le, and in Figure 2b, we show the
ir
le at a later time. In Figure 2
, we show the initial position of the level set fun
tion �, and in Figure 2d,we show this fun
tion at a later time.There are four major advantages to this Eulerian Hamilton-Ja
obi formulation. The �rst is that theevolving fun
tion �(x; t) always remains a fun
tion as long as F is smooth. However, the level surfa
e � = 0,and hen
e the propagating hypersurfa
e �(t), may 
hange topology, break, merge, and form sharp 
ornersas the fun
tion � evolves, see [25℄.The se
ond major advantage of this Eulerian formulation 
on
erns numeri
al approximation. Be
ause�(x; t) remains a fun
tion as it evolves, we may use a dis
rete grid in the domain of x and substitute �nitedi�eren
e approximations for the spatial and temporal derivatives. For example, using a uniform mesh ofspa
ing h, with grid nodes (i; j), and employing the standard notation that �nij is the approximation to thesolution �(ih; jh; n�t), where �t is the time step, we might write�n+1ij � �nij�t + (F )(rij�nij) = 0 (11)5
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(c) (d)Figure 2: Propagating Cir
leHere, we have used forward di�eren
es in time, and let rij�nij be some appropriate �nite di�eren
e operatorfor the spatial derivative. As dis
ussed above, the 
orre
t entropy-satisfying approximation to the di�eren
eoperator 
omes from exploiting the te
hnology of hyperboli
 
onservation laws. Following [25℄, given a speedfun
tion F (K), we update the front by the following s
heme. First, separate F (K) into a 
onstant adve
tionterm F0 and the remainder F1(K), that is, F (K) = F0 + F1(K) (12)The adve
tion 
omponent F0 of the speed fun
tion is then approximated using upwind s
hemes, while theremainder is approximated using 
entral di�eren
es. In one spa
e dimension with F0positive, we have�n+1i = �ni ��tF0 h�max(D�i ; 0)2 +min(D+i;0)2�1=2 � jF1(K)r�ni ji (13)Extension to higher dimensions are straightforward; we use the version introdu
ed in [33℄.The third major advantage of the above formulation is that intrinsi
 geometri
 properties of the frontmay be easily determined from the level fun
tion �. For example, at any point of the front, the normalve
tor is given by ~n = r�jr�j (14)and the 
urvature is easily obtained from the divergen
e of the gradient of the unit normal ve
tor to front,i.e., K = r � r�jr�j = ��xx�2y � 2�x�y�xy + �yy�2x(�2x + �2y)3=2 (15)6



F = 1:� 0:025K F = 1:� 0:25KFig:3a: F ig:3bFigure 3: Propagating Triple Sine Curve.Finally, the fourth major advantage of the above level set approa
h is that there are no signi�
antdi�eren
es in following fronts in three spa
e dimensions. By simply extending the array stru
tures andgradient operators, propagating surfa
es are easily handled.As an example of the appli
ation of level set methods, 
onsider on
e again the problem of a frontpropagating with speed F (K) = 1 � �K. In Figure 3, we show two 
ases of a propagating initial triple sin
urve. For � small (Fig. 3a), the troughs sharpen up and will result in transverse lines that 
ome too 
losetogether. For � large (Fig. 3b), parts of the boundary with high values of positive 
urvature 
an initiallymove inwards, and 
on
ave parts of the front 
an move qui
kly up.3 Extensions of the Level Set Te
hnique3.1 Fast Level Set MethodsThe main issue in the level set approa
h is the extension of the speed fun
tion F to all of spa
e in orderto move all the level sets, not simply the zero level set on whi
h the speed fun
tion is naturally de�ned.While this may be straightforward in some 
ases, it is not eÆ
ient, sin
e one must perform 
onsiderable
omputational labor away from the front to advan
e the other level sets.In [1℄, an approa
h introdu
ed by Chopp in [10℄ and used in re
overing images in [23℄, was re�ned andanalyzed extensively. The 
entral idea is to fo
us 
omputational e�ort in a narrow band about the zero levelset. We only update the values of the level set fun
tion � in this thin zone around the interfa
e. Thus, intwo dimensions, an O(N2) 
al
ulation, where N is the number of grid points per side, redu
es to an O(kN )
al
ulation, where k is the number of 
ells in the narrow band. This redu
tion of labor makes the methodtypi
ally mu
h faster than marker parti
le methods, due to the need for many marker points per mesh 
ellin order to obtain a

eptable a

ura
y. As the front moves, the narrow band must o

asionally be rebuilt(known as \re-initialization") of the interfa
e. For details, see [10, 23, 1℄.7



S
heme 40 Cells 80 Cells 16 CellsNarrow Band 1st Order 125.1 243.5 507.9Full Matrix 1st Order 330.9 1367.5 5657.6Narrow Band 2nd Order 118.8 250.5 547.8Figure 4: Comparative Timings of S
hemesBrie
y, the entire two-dimensional grid of data is stored in a square array. A one{dimensional obje
t isused to keep tra
k of whi
h points in this array 
orrespond to the tube, and the values of � at those pointsare updated. When the front moves half the distan
e towards the edge of the tube boundary, the 
al
ulationis stopped, and a new tube is built with the zero level set interfa
e boundary at the 
enter. Details on thea

ura
y, typi
al tube sizes, and number of times a tube must be rebuilt may be found in [1℄.As an example of the speed up possible using this approa
h, we 
ite the results given in [1℄. On a typi
altwo-dimensional interfa
e tra
king problem, we 
ompare timings of a �rst and se
ond order narrow bandapproa
h with the the full matrix approa
h; 
al
ulations are performed over various grid sizes. Resultsare measured in a rough manner, with optimization turned o� and timing 
ompared using the Unix time
ommand. Thus, the important feature are the ratios. The narrow band 
al
ulation is around 10 timesfaster for the �nest 
al
ulation than the full matrix solution.3.2 Multiple Interfa
es and Triple Point Jun
tionsAs initially designed in [25℄, the level set te
hnique is designed to tra
k an interfa
e where there is a 
leardistin
tion between an "inside" and "outside". This is be
ause the interfa
e is assigned the zero level valuebetween the two regions. Some work has been done on extending the approa
h to multiple 
uids; mostlynotably in [5℄ where an extensive study of the motion of triple points was made. In the approa
h presentedthere, at ea
h time step the 
al
ulation stops, the zero level set is found, and the entire level set fun
tion isrebuilt using a reinitialization te
hnique.In many 
ases, su
h an approa
h is not ne
essary; in [34℄ a level approa
h is given for tra
king an arbitrarynumber of interfa
es in two and three dimensions whi
h in
ludes the motion of triple points in some 
ases.The te
hnique presented does not rely on any reinitialization, and retains the essential 
hara
teristi
 of theoriginal approa
h; the front is only expli
itly 
onstru
ted for display purposes. Here, we brie
y review theapproa
h, for details, see [34℄.The key idea lies in re
asting the interfa
e motion as the motion of one level set fun
tion for ea
h material.In some sense, this is what was done in the re-ignition idea given in [26℄. In that approa
h, the front wasa 
ame whi
h propagated downstream under a 
uid 
ow, and was re-ignited at ea
h time step at a 
ameholder point. This "re-ignition" was exe
uted by taking the minimumof the advan
ing 
ame and its original
on�guration around the 
ame holder, thus ensuring that the maximum burned 
uid is a
hieved.Imagine that we have N separate regions, and a full set of all possible pairwise speed fun
tions FIJ whi
hdes
ribe the propagation speed of region I into region J; F is taken as zero if Region I 
annot penetrate J.The idea is to advan
e ea
h interfa
e to obtain a trial value for ea
h interfa
e with respe
t to motion intoevery other region, and then 
ombine the trial values in su
h a way as to obtain the maximum possiblemotion of the interfa
e.In general then, we pro
eed as follows. Given a Region I, we obtain N � 1 trial level set fun
tions ��IJ8



Fig:5a F ig:5b F ig:5
F ig:5d F ig:5e F ig:5fIn
uen
e Matrix on A on B on CE�e
t of A 1.0 3.0 1.0E�e
t of B 0.0 1.0 2.0E�e
t of C 0.0 0.0 1.0Figure 5: A into C with speed 1, A into B with speed 3, B into C with speed 2by moving the Region I into ea
h possible Region J, J=1,N (J 6= I) with speed FIJ . During the motion ofRegion I into Region J, we assume that all other regions are impenetrable. We then test the penetrabilityof the Region J itself, leaving the value of ��IJ un
hanged if FIJ 6= 0, else modifying it with the maximumof itself and ���JI . Finally, to allow Region I to evolve as mu
h as possible, we take the minimum over allpossible motions to obtain the new position; this is the re-ignition idea des
ribed earlier. Complete detailsof the approa
h may be found in [34℄.As illustration of our approa
h, we show two examples. First, we show three regions, des
ribed as RegionsA, B, and C. Region A grows with speed 1 into Region C, and Region B grows with speed 2. On
e they
ome into 
onta
t, Region A dominates Region B with speed 3, thus Region B grows through Figure 5
,and then is "eaten up" by the advan
ing Region A. Note what happens; Region A advan
es with speed 3 tothe edge of Region B, whi
h is only advan
ing with speed 1 into Region C. However, Region A 
annot passRegion B, be
ause its speed into Region C is slower than that of Region B.Next, we study the motion of a triple point between Regions A, B, and C. We assume that Region Apenetrates B with speed 1, B penetrates C with speed 1, and C penetrates A with speed 1. The exa
t solutionto this is given by a spiral with no limiting tangent angle as the triple point is approa
hed. The triple pointdoes not move; instead, the regions spiral around it. In Figure 6, we show the results 
al
ulated on a 98x98grid. Starting from the initial 
on�guration, the regions spiral around ea
h other, with the leading tip ofea
h spiral 
ontrolled by the grid size. In other words, we are unable to resolve spirals tighter than the gridsize, and hen
e that 
ontrols the �ne s
ale des
ription of the motion. However, we note that the triple pointremains �xed. 9



Fig:6a T = 0:0 Fig:6b T = 1:0 Fig:6
 T = 2:0Fig:6d T = 3:0 Fig:6e T = 4:0 Fig:6f T = 5:0In
uen
e Matrix on A on B on CE�e
t of A 1.0 1.0 0.0E�e
t of B 0.0 1.0 1.0E�e
t of C 1.0 0.0 1.0Figure 6: Spiraling Triple Point: 98x98 Grid3.3 Fast Reinitialization Te
hniquesThere are two situations in whi
h rebuilding the signed distan
e level set fun
tion, or "reinitialization" maybe required. The �rst is in the narrow band te
hnique, in whi
h on
e the front leaves the narrow band a newband must be 
onstru
ted. The se
ond is in situations in whi
h the velo
ity of the interfa
e 
orrespondingto the zero level does not extend naturally to the other level sets, or gives rise to 
omplex motion of theother level sets. The issue was �rst dis
ussed in [24℄, in whi
h the use of the level set method to performimage segmentation led to an image-based speed term whi
h had no meaning for any other 
ontour besidesthe interfa
e itself. Another example of this problem is in simulations of the motion of a 
uid boundarybetween two 
uids with large density di�eren
es. While the 
uid velo
ity is a natural 
andidate for thespeed fun
tion of all the level sets, it is easy to see that this is a poor 
hoi
e; the 
uid velo
ity in the lighter
uid 
an be orders of magnitude larger than that in the heavier 
uid, giving rise to wild gradients in thelevel set motions of 
ontours neighboring the zero level set. Consequently, one is fa
ed with two approa
hes.The �rst approa
h is devise an extension speed fun
tion whi
h, although having no real physi
al meaningaway from the interfa
e itself, behaves appropriately for the other level sets and has the 
orre
ting limitingvalue on the zero level set. This is the approa
h taken in [33℄. The se
ond approa
h is to simply use any
onvenient velo
ity �eld (for example, the 
uid velo
ity in the two-
uid problem), and then re-initialize thelevel set fun
tion periodi
ally to rebuild the level sets around the position of the zero level set.This is the approa
h taken in [10℄, in whi
h the level set fun
tion is rebuilt in a small band about thefront by �rst �nding the front expli
itely and then re
omputing the signed distan
e from this front at allgrid points in the narrow band around the front. An alternative te
hnique was introdu
ed and employed in10



[9℄; in that work, the level set fun
tion was rebuilt by solving the asso
iated equation�t = S(�)(1 � jr�j) (16)where S(�) is the sign of �. By solving this equation until steady-state 
onvergen
e, the left hand sidebe
omes zero and the resulting value of r� be
omes one, whi
h 
orresponds to a initialization of � by thedistan
e fun
tion.This te
hnique 
an be made eÆ
ient; however, sin
e the swit
h fun
tion given by S(�) only 
hoosesdire
tion on the basis of values on the grid, mu
h of the sub-grid information about the lo
ation of theinterfa
e is lost. This is be
ause the use of the sign fun
tion pays no attention to the a
tual lo
ation of thezero level set within a parti
ular 
ell, whi
h 
an be seen by 
onsidering a simple one-dimensional example.Instead, we use an alternate te
hnique, �rst dis
ussed in [31℄, des
ribed in [34℄, and used extensively in[2, 3℄. Suppose that at some time one has a level set fun
tion � whose zero level set 
orresponds to theposition of the interfa
e. The goal is to rebuild the level set fun
tion without disturbing the zero level setso that the new fun
tion 
orresponds to the signed distan
e fun
tion. We do this as follows. First, 
ow thelevel set fun
tion forward in time with speed fun
tion F = 1, and measure the time when the value of � atea
h grid point ahead of the front (that is, for all values of � > 0) 
hanges sign. The time when the sign
hanges 
learly 
orresponds to the distan
e to the front by Huyghen's prin
iple, see [28℄. Se
ond, repeat thepro
ess by 
owing the front ba
kwards, that is, with speed F = �1 and again 
ompute the zero 
rossingtime.This pro
edure results in a highly a

urate rebuilding of the signed distan
e fun
tion around the zerolevel set 
orresponding to the interfa
e. It 
an be performed using a high order method, and is extremelyfast if one 
hooses a large time step near the edge of the Courant 
ondition. We use it in all level set methodsrequired reinitialization. For details, see [34℄.4 Interfa
e Problems in CFD and Material S
ien
eIn this se
tion, we dis
uss some re
ent appli
ations of the level set te
hnique to a variety of problems in CFDand material pro
essing.4.1 Generation of Body-�tted Logi
ally Re
tangular GridsThe generation of logi
ally re
tangular grids around and inside 
omplex bodies is still an art. While unstru
-tured meshes may be obtained in a relatively automated fashion, many 
al
ulations require the a

ura
yof a logi
ally re
tangular, body-�tted grid. For example, high Reynolds turbulent 
ow requires an a

u-rate, body-�t grid in the boundary layer where gradients are steep and a highly a

urate s
heme is 
riti
al.Standard te
hniques in logi
al re
tangular boundary-�tted grid generation fall under four general 
ategories.Hyperboli
 grids mar
h out from the boundary. Algebrai
 grids adjust nodes until a desired shape is a
hieved.Ellipti
 grids solve an asso
iated ellipti
 partial di�erential equation,and variational methods minimize 
er-tain fun
tionals. Grids obtained through these te
hniques 
an be plagued by 
olliding grid lines, inability tohandle sharp 
orners in the bodies, and diÆ
ulty extending to three spa
e dimensions.Re
ently, level set te
hniques have been applied to grid generation in two and three dimensions, [31℄.Here, we review some of that work; for details see [31℄.The te
hnique hinges on viewing the boundary of thebody as a propagating front. The front is then allowed to propagate with a speed law that ensures that it11



will smoothly evolve from the body in su
h a way that the position of the front yields one set of 
oordinatelines. The judi
ious 
hoi
e of speed fun
tion produ
es a geometry-
owing interfa
e whi
h is guaranteedto handle 
usps and 
orners, produ
e smooth 
ontours, and trivially extend to three spa
e dimensions.Lines orthonormal to the propagating, body-�tted, level-set lines are obtained by following the traje
toriesof parti
les propagating with a speed fun
tion dependent on the lo
al 
urvature and emanating from theboundary.Using this approa
h, the resulting algorithm generates two and three dimensional interior and exte-rior grids around reasonably 
omplex bodies whi
h may 
ontain sharp 
orners and signi�
ant variationsin 
urvature. We have also used these te
hniques to produ
e non-uniform solution-adaptive meshes andboundary-�tted moving grids. The algorithm is 
ompletely automati
; the only user-supplied grid-dependentparameters are the shape of the initial boundary, and the time step spa
ing for the evolving front fun
tion.In Figure 7, we show the results of this appli
ation. In Figure 7a, a two-dimensional external grid is pro-du
ed around a fairly 
omplex obje
t; in Figure 7b, an internal grid is 
omputed. Finally, in Figure 7
, athree-dimensional grid is obtained. In the exterior grid 
ases, a speed fun
tion was 
hosen of the generi
form 1 � �K, where K is the 
urvature; in the 
ase of the interior grid, the speed fun
tion was 
hosen asF = min(Æ;K), where Æ is a threshold value 
hosen to ensure that every point of the body moves inwardswith some minimum speed. Without su
h a fa
tor, points on non-
onvex boundaries would �rst evolveoutwards at some points, whi
h violates the ability of the algorithm to 
reate a grid.The above approa
h is automati
, inexpensive, and requires no 
omplex alteration in three-dimensions.To extend it to multiple bodies, 
urrent work is aimed at using the above level set approa
h to grid generationto generate a logi
ally re
tangular grid near ea
h body (for example, in the boundary layer and past), andthen take these grids as input to more traditional te
hniques whi
h 
an grid multiple bodies, but 
annota

ess 
omplex shapes in an automati
 fashion. Thus, the approa
h is a marriage of the level set algorithmto generate an a

urate near-body grid whi
h yields a smoother, almost 
onvex shape, and a traditionalmethodology whi
h will pat
h these smooth grids together. For details of this approa
h, see [32℄.4.2 Flame Propagation and CombustionLevel set methods have been used to tra
k 
ombustion and 
ame fronts; here, we report on two su
h
al
ulations. First, in [26℄, the method is used to the study the stability of a 
ame atta
hed to a 
ameholder. Here, the e�e
ts of upstream turbulen
e, exothermi
 e�e
ts due to volume expansion along the
ame front, 
ame speed dependen
e on 
urvature, and vorti
ity produ
tion along the 
ame front due to thebaro
lini
 term as manifested through 
ame stret
h are all 
onsidered. The model uses the level set methodto tra
k the position and 
urvature of the evolving 
ame, produ
ing internal boundary 
onditions for the
ame-indu
ed exothermi
 and baro
lini
 velo
ity �elds. In Figure 8 we show two e�e
ts; �rst, in Fig.8a,taken from [26℄, an in
oming upstream turbulen
e �eld intera
ts with exothermi
 produ
tion along the 
amefront. Su

essive time photos are superimposed, showing the width of 
ame brush. In Fig.8b, the e�e
ts ofvorti
ity produ
tion along the 
ame front is added; in this 
ase, the in
oming turbulen
e �eld stret
hs and
ontorts the 
ame whi
h then 
auses 
ame stret
h, indu
ing vorti
ity whi
h self-wrinkles the 
ame. Thise�e
t is seen in the widening of the 
ame brush.Next, we show the results of simulations in [36℄, in whi
h a level set method to tra
k 
ombustion regionsis 
oupled to a proje
tion method for the in
ompressible 
ow �eld. In Figure 9, taken from [36℄, we showignition at the 
enter of a doubly periodi
 shear jet; the 
ame propagates with a speed that depends on thelo
al 
urvature. The results show the ability of the level set method to follow sharp 
orners, tra
k 
usps,12



Figure 7: Level Set Approa
h to Grid Generation13



Exothermi
 Only Exothermi
ity and Baro
lini
ityFigure 8: Stability of Flame Under Exothermi
 and Baro
lini
 E�e
tsand 
hange topology.4.3 Crystal Growth and Dendriti
 Solidi�
ationIn [33℄, level set methods were used to 
ompute the motion of 
omplex solid/liquid boundaries in 
rystalgrowth. The model in
ludes physi
al e�e
ts su
h as 
rystalline anisotropy, surfa
e tension, mole
ular kineti
sand under
ooling. The fundamental 
oupling is due to a single history-dependent boundary integral equationon the solid/liquid boundary developed by Strain [35℄. The setup of the problem is as follows; a super
ooledliquid is pla
ed within a 
ontainer, and a small solid seed disturban
e is pla
ed in the 
enter. This initiates arapid and unstable dendriti
 solidi�
ation problem, in whi
h the solid phase sends bran
hing �ngers into thedistant 
ooler liquid near the under
ooled walls. Hen
e the problem be
omes a moving boundary problem, inwhi
h the temperature �eld satis�es a heat equation in ea
h phase, 
oupled through two boundary 
onditionson the unknown moving solid/liquid boundary, as well as initial and boundary 
onditions.Numeri
al experiments were performed in [33℄ by 
oupling the level set method to the boundary integralformulation, and showed the evolution of 
ompli
ated shapes with spikes and 
orners, topologi
al 
hangesin the solid-liquid boundary, dendrite formation and sidebran
hing. In Figure 10, we show the results ofone su
h 
al
ulation, obtained by slowing in
reasing the latent heat of formation. The results show that asthis term is in
reased, the front be
omes markedly unstable as it is drawn to the side walls, and produ
essigni�
ant side-bran
hing and tip splitting.4.4 Mi
rofabri
ation of Ele
troni
 Components: Et
hing, Deposition, and Lithog-raphyFinally, we show the appli
ation of level set te
hniques to problems in et
hing, deposition and photolithogra-phy, whi
h are o

ur in the manufa
ture of ele
troni
 
omponents. In [2, 3℄, the e�e
ts of three dimensionalet
hing and deposition under the e�e
ts of visibility, dire
tional, and sour
e 
ux fun
tions, evolution of14



Figure 9: Combustion in Doubly-Periodi
 Shear Layer
Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10c: 96x96: Dt=.00125: Hlat=.916Figure 10c: 96x96: Dt=.00125: Hlat=.916Figure 10c: 96x96: Dt=.00125: Hlat=.916Figure 10c: 96x96: Dt=.00125: Hlat=.916

Figure 10b: 96x96: Dt=.00125: Hlat=.833Figure 10b: 96x96: Dt=.00125: Hlat=.833Figure 10b: 96x96: Dt=.00125: Hlat=.833Figure 10a: 96x96: Dt=.00125: Hlat=.75Figure 10a: 96x96: Dt=.00125: Hlat=.75

Figure 10: E�e
ts of Latent Heat on Dendriti
 Growth in Solidi�
ation15



Figure 11: Pro�le Obtained under Photolithographylithographi
 pro�les, dis
ontinuous et
h rates through multiple materials, and non-
onvex sputter yield 
uxfun
tions are 
onsidered.In this appli
ation, the goal is to follow the evolution of a material surfa
e pro�le under the e�e
ts of:� Deposition: in whi
h parti
les are deposited on the surfa
e, 
ausing build-up in the pro�le, eitherthrough isotropi
 (\wet" deposition) or under dire
tional deposition,� Et
hing: Parti
les remove material from the evolving pro�le boundary. The material may be isotropi-
ally removed, known again as 
hemi
al or \wet" et
hing, or 
hipped away through rea
tive ion et
hing,also known as \ion milling",� Lithography: in whi
h the underlying material is treated by an ele
tromagneti
 wave whi
h alters theresist property of the material.We show the results of two simulations. First, in Figure 11, we show the three-dimensional resist sur-fa
e obtained under a rate fun
tion obtained through a blea
h pro
ess. The level set method tra
ks theundulations in the evolving pro�le driven by the underlying standing ele
tromagneti
 wave.Finally, in Figure12, we show results of a saddle surfa
e being et
hed away under a non-
onvex sputteret
h law of the form F = [1 + 4 sin2(�)℄ 
os(�) where � meaures the angle between the surfa
e normal andthe verti
al dire
tion. This motion gives rise to fa
eting at 
orners and unusual rarefa
tion stru
tures. Su
ha speed law is used in sputter et
hing, in whi
h enhan
ed dire
tionality is desired.A
knowledgements: All 
al
ulations were performed at the University of California at Berkeley andthe Lawren
e Berkeley Laboratory. 16



Initial Shape : T = 0 F = [1+ 4 sin2(�)℄ 
os(�) T = 8(rotated)Figure 12: Saddle Surfa
e Under Non-Convex Dire
tional Sputter Et
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