
Algorithms for Traking Interfaes in CFD and Material SieneJ.A. Sethian �Department of MathematisandLawrene Berkeley LaboratoryUniversity of CaliforniaBerkeley, California 94720AbstratWe desribe new appliations of the level set approah for following the evolution of omplex interfaes.This approah is based on solving an initial value partial di�erential equation for a propagating levelset funtion, using tehniques borrowed from hyperboli onservation laws. Topologial hanges, ornerand usp development, and aurate determination of geometri properties suh as urvature and normaldiretion are naturally obtained in this setting. In this paper, we review some reent work, inludingfast level set methods, extensions to multiple uid interfaes, generation of omplex interior and exteriorbody-�tted grids, and appliations to problems in ombustion and material siene.1 IntrodutionIn this paper, we review some reent work whih extends the apabilities of level set methods for trakingthe evolution of omplex interfaes, and summarize some new reent appliations of these tehniques. Levelset methods, introdued by Osher and Sethian [25℄, o�er highly robust and aurate methods for trakinginterfaes moving under omplex motions. Their major virtue is that they naturally onstrut the funda-mental weak solution to surfae propagation posed by Sethian [27, 28℄. They work in any number of spaedimensions, handle topologial merging and breaking naturally, and are easy to program. They approximatethe equations of motion for the underlying propagating surfae, whih resemble Hamilton-Jaobi equationswith paraboli right-hand sides. The entral mathematial idea is to view the moving front as a partiularlevel set of a higher dimensional funtion. In this setting, sharp gradients and usps an form easily, and thee�ets of urvature may be easily inorporated. The key numerial idea is to borrow the tehnology from thenumerial solution of hyperboli onservation laws and transfer these ideas to the Hamilton-Jaobi setting,whih then guarantees that the orret entropy satisfying solution will be obtained.�Supported in part by the Applied Mathematis Subprogram of the OÆe of Energy Researh under ontrat DE-AC03-76SF00098, and the National Siene Foundation and DARPA under grant DMS-8919074.1



A variety of numerial algorithms are available to advane propagating interfaes in suh areas as CFD,dendriti growth and solidi�ation, ame/ombustion models, and material proessing. Roughly speaking,they fall into three general ategories:� Marker/String Methods: In these methods, a disrete parameterized version of the interfae boundaryis used. In two dimensions, marker partiles are used; in three dimensions, a nodal triangularizationof the interfae is often developed. The positions of the nodes are then updated by determining frontinformation about the normals and urvature from the marker representation. Suh representationsan be quite aurate, however, limitations exist for omplex motions. To begin, if orners and uspsdevelop in the evolving front, markers usually form \swallowtail" solutions whih must be removedthrough delooping tehniques whih attempt to enfore an entropy ondition inherent in suh motion(see [28℄). Seond, topologial hanges are diÆult to handle; when regions merge, some markersmust be removed. Third, signi�ant instabilities in the front an result, sine the underlying markerpartile motions represent a weakly ill-posed initial value problem (see [25℄). Finally, extensions ofsuh methods to three dimensions require additional work.� Cell-Based Methods: In these methods, the omputational domain is divided into a set of ells whihontain \volume frations" These volume frations are numbers between 0 and 1, and represent thefration of eah ell ontaining the physial material. At any time, the front an be reonstruted fromthese volume frations. Advantages of suh tehniques inlude the ability to easily handle topologialhanges, adaptive mesh methods, and extensions to three dimensions. However, determination ofgeometri quantities suh as normals and urvature an be inaurate.� Charateristi Methods: In these methods, \ray-trae"-like tehniques are used. The harateristiequations for the propagating interfae are used, and the entropy ondition at forming orners (see[28℄) is formally enfored by onstruting the envelope of the evolving harateristis. Suh methodshandle the looping problems more naturally, but may be omplex in three-dimensions and requireadaptive adding and removing rays, whih an ause instabilities and/or oversmoothing.As disussed above, level set methods are powerful tehniques for traking interfaes that naturally handleorners and usps that develop, orretly develop the orret weak solution that invokes the entropy onditionintrodued in [28℄, and extend in a straightforward manner to three dimensions. Sine their introdution,in [25℄, the level set approah has been used in a wide olletion of problems involving moving interfaes.Some of these appliations inlude the generation of minimal surfaes [10℄, singularities and geodesis inmoving urves and surfaes in [12℄, ame propagation [26, 36℄, uid interfaes [6, 9℄, rystal growth anddendriti solidi�ation [33℄, detetion of self-similar surfaes [11℄, ething, deposition and lithography [2, 3℄,and shape reonstrution [23℄. Extensions of the basi tehnique inlude fast methods in [1℄ and methodsfor multiple uid interfaes [34℄. The fundamental Eulerian perspetive presented by this approah has sinebeen adopted in many theoretial analyses of mean urvature ow, see in partiular [14, 8℄, and related workin [4, 13, 15, 16, 19, 21℄.In this paper, we disuss some of these appliations, and reent work whih extends the level set methodto inrease its power and versatility. In partiular, we review work on the development of fast methods,methods for multiple interfaes and triple points, and fast methods for reinitialization whih may be requiredin some omplex ases. In the appliations domain, we disuss the implementation of the level set methods2



for propagating interfaes applied to rystal growth, ame stability and propagation, grid generation, andmirofabriation problems in ething, deposition, and photolithography.2 Fundamentals of the Level Set Method: Numerial Algorithmsfor Propagating FrontsThe fundamental aspets of front propagation in our ontext an be illustrated as follows. Let (0) be asmooth, losed initial urve in R2, and let (t) be the one{parameter family of urves generated by moving(0) along its normal vetor �eld with speed F (K). Here, F (K) is a given salar funtion of the urvatureK. Thus, n � xt = F (K), where x is the position vetor of the urve, t is time, and n is the unit normal tothe urve. It an be shown that a urve ollapsing under its urvature shrinks to a irle, see [17, 18, 20℄.Consider a speed funtion of the form 1 � �K, where � is a onstant. An evolution equation for theurvature K, see [28℄, is given by Kt = �K�� + �K3 �K2 (1)where we have taken the seond derivative of the urvature K with respet to arlength �. This is areation-di�usion equation; the drive toward singularities due to the reation term (�K3 �K2) is balanedby the smoothing e�et of the di�usion term (�K��). Indeed, with � = 0, we have a pure reation equationKt = �K2. In this ase, the solution is K(s; t) = K(s; 0)=(1 + tK(s; 0)), whih is singular in �nite t if theinitial urvature is anywhere negative. Thus, orners an form in the moving urve when � = 0.As an example, onsider the periodi initial osine urve(0) = (�s; [1 + os 2�s℄=2) (2)propagating with speed F (K) = 1 � �K, � > 0. As the front moves, the troughs at s = n + 1=2; n =0;�1;�2; :::: are sharpened by the negative reation term (beause K < 0 at suh points) and smoothed bythe positive di�usion term (see Figure 1a). For � > 0, it an be shown (see [28, 25℄) that the moving frontstays C1.On the other hand, for � = 0, the front develops a sharp orner in �nite time as disussed above. Ingeneral, it is not lear how to onstrut the normal at the orner and ontinue the evolution, sine thederivative is not de�ned there. One possibility is the \swallowtail" solution formed by letting the front passthrough itself (see Figure 1b). However, from a geometrial argument it seems lear that the front at timet should onsist of only the set of all points loated a distane t from the initial urve. (This is known asthe Huygens priniple onstrution, see [28℄). Roughly speaking, we want to remove the \tail" from the\swallowtail". In Figure 1, we show this alternate weak solution. Another way to haraterize this weaksolution is through the following \entropy ondition" posed by Sethian (see [28℄): If the front is viewed as aburning ame, then one a partile is burnt it stays burnt. Careful adherene to this stipulation produes theHuygens priniple onstrution. Furthermore, this physially reasonable weak solution is the formal limit ofthe smooth solutions � > 0 as the urvature term vanishes, (see [28℄).As further illustration, we onsider the ase of a V-shaped front propagating normal to itself with unitspeed (F = 1). In [27℄, the link between this motion and hyperboli onservation laws is explained. Ifthe point of the front is downwards; as the moves inwards with unit speed, a shok develops as the frontpinhes o�, and an entropy ondition is required to selet the orret solution to stop the solution from beingdouble-valued and to produe the limit of the visous ase. Conversely, if the point of the front is upwards;3



F = 1:� 0:25K Swallowtail(F = 1:0) Entropy Satisfying(F = 1:0)Fig:1a: F ig:1b F ig:1Figure 1: Propagating Cosine Curve.in this ase the unit normal speed results in a rarefation fan whih onnets the left state with slope +1 tothe right state whih has slope �1. Extensive disussion of the role of shoks and rarefations in propagatingfronts may be found in [27℄.The key to onstruting numerial shemes whih adhere to both this entropy ondition and rarefationstruture omes from the link between propagating fronts and hyperboli onservation laws. Consider theinitial front given by the graph of f(x), with f and f 0 periodi on [0; 1℄, and suppose that the propagatingfront remains a funtion for all time. Let � be the height of the propagating funtion at time t, thus�(x; 0) = f(x). The normal at (x; �) is (1; �x), and the equation of motion beomes �t = F (K)(1 + �2x)1=2.Using the speed funtion F (K) = 1� �K and the formula K = ��xx=(1 + �2x)3=2, we get�t � (1 + �2x)1=2 = � �xx1 + �2x (3)Di�erentiating both sides of this equation yields an evolution equation for the slope u = d�=dx of thepropagating front, namely ut + [�(1 + u2)1=2℄x = �[ ux1 + u2 ℄x: (4)Thus, the derivative of the Hamilton-Jaobi equation with paraboli right-hand-side for the hanging height� is a visous hyperboli onservation law for the propagating slope u (see [30℄). Our entropy ondition isin fat equivalent to the one for propagating shoks in hyperboli onservation laws. Thus, we exploit thenumerial tehnology from hyperboli onservation laws to build onsistent, upwind shemes whih seletthe orret entropy onditions. For details, see [25, 29℄.Our goal then is to hoose an appropriate speed funtion that yields front motion away from the bodythat remains smooth for all time, and thus an at to de�ne one set of body-�t oordinate lines. Before doingso, we must extend the above ideas to inlude propagating fronts whih are not easily written as funtions.This is the level set idea introdued by Osher and Sethian [25℄, whih we now desribe.4



Given a moving losed hypersurfae �(t), that is, �(t = 0) : [0;1)! RN , we wish to produe an Eulerianformulation for the motion of the hypersurfae propagating along its normal diretion with speed F , whereF an be a funtion of various arguments, inluding the urvature, normal diretion, et. The main idea isto embed this propagating interfae as the zero level set of a higher dimensional funtion �. Let �(x; t = 0),where x 2 RN be de�ned by �(x; t = 0) = �d (5)where d is the distane from x to �(t = 0), and the plus (minus) sign is hosen if the point x is outside(inside) the initial hypersurfae �(t = 0). Thus, we have an initial funtion �(x; t = 0) : RN ! R with theproperty that �(t = 0) = (xj�(x; t= 0) = 0) (6)Our goal is to now produe an equation for the evolving funtion �(x; t) whih ontains the embedded motionof �(t) as the level set � = 0. Let x(t); t 2 [0;1) be the path of a point on the propagating front. That is,x(t = 0) is a point on the initial front �(t = 0), and xt = F (x(t)) with the vetor xt normal to the front atx(t). Sine the evolving funtion � is always zero on the propagating hypersurfae, we must have�(x(t); t) = 0 (7)By the hain rule, �t +r�(x(t; t)) � x0(t) = 0 (8)Sine F already gives the speed in the outward normal diretion, then x0(t) � n = F where n = r�=jr�j.Thus, we then have the evolution equation for �, namely�t + F jr�j= 0 (9)�(x; t = 0) given (10)We refer to this as a Hamilton-Jaobi \type" equation beause, for ertain forms of the speed funtion F ,we obtain the standard Hamilton-Jaobi equation.In Figure 2, (taken from [31℄), we show the outward propagation of an initial urve and the aompanyingmotion of the level set funtion �. In Figure 2a, we show the initial irle, and in Figure 2b, we show theirle at a later time. In Figure 2, we show the initial position of the level set funtion �, and in Figure 2d,we show this funtion at a later time.There are four major advantages to this Eulerian Hamilton-Jaobi formulation. The �rst is that theevolving funtion �(x; t) always remains a funtion as long as F is smooth. However, the level surfae � = 0,and hene the propagating hypersurfae �(t), may hange topology, break, merge, and form sharp ornersas the funtion � evolves, see [25℄.The seond major advantage of this Eulerian formulation onerns numerial approximation. Beause�(x; t) remains a funtion as it evolves, we may use a disrete grid in the domain of x and substitute �nitedi�erene approximations for the spatial and temporal derivatives. For example, using a uniform mesh ofspaing h, with grid nodes (i; j), and employing the standard notation that �nij is the approximation to thesolution �(ih; jh; n�t), where �t is the time step, we might write�n+1ij � �nij�t + (F )(rij�nij) = 0 (11)5
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(c) (d)Figure 2: Propagating CirleHere, we have used forward di�erenes in time, and let rij�nij be some appropriate �nite di�erene operatorfor the spatial derivative. As disussed above, the orret entropy-satisfying approximation to the di�ereneoperator omes from exploiting the tehnology of hyperboli onservation laws. Following [25℄, given a speedfuntion F (K), we update the front by the following sheme. First, separate F (K) into a onstant advetionterm F0 and the remainder F1(K), that is, F (K) = F0 + F1(K) (12)The advetion omponent F0 of the speed funtion is then approximated using upwind shemes, while theremainder is approximated using entral di�erenes. In one spae dimension with F0positive, we have�n+1i = �ni ��tF0 h�max(D�i ; 0)2 +min(D+i;0)2�1=2 � jF1(K)r�ni ji (13)Extension to higher dimensions are straightforward; we use the version introdued in [33℄.The third major advantage of the above formulation is that intrinsi geometri properties of the frontmay be easily determined from the level funtion �. For example, at any point of the front, the normalvetor is given by ~n = r�jr�j (14)and the urvature is easily obtained from the divergene of the gradient of the unit normal vetor to front,i.e., K = r � r�jr�j = ��xx�2y � 2�x�y�xy + �yy�2x(�2x + �2y)3=2 (15)6



F = 1:� 0:025K F = 1:� 0:25KFig:3a: F ig:3bFigure 3: Propagating Triple Sine Curve.Finally, the fourth major advantage of the above level set approah is that there are no signi�antdi�erenes in following fronts in three spae dimensions. By simply extending the array strutures andgradient operators, propagating surfaes are easily handled.As an example of the appliation of level set methods, onsider one again the problem of a frontpropagating with speed F (K) = 1 � �K. In Figure 3, we show two ases of a propagating initial triple sinurve. For � small (Fig. 3a), the troughs sharpen up and will result in transverse lines that ome too losetogether. For � large (Fig. 3b), parts of the boundary with high values of positive urvature an initiallymove inwards, and onave parts of the front an move quikly up.3 Extensions of the Level Set Tehnique3.1 Fast Level Set MethodsThe main issue in the level set approah is the extension of the speed funtion F to all of spae in orderto move all the level sets, not simply the zero level set on whih the speed funtion is naturally de�ned.While this may be straightforward in some ases, it is not eÆient, sine one must perform onsiderableomputational labor away from the front to advane the other level sets.In [1℄, an approah introdued by Chopp in [10℄ and used in reovering images in [23℄, was re�ned andanalyzed extensively. The entral idea is to fous omputational e�ort in a narrow band about the zero levelset. We only update the values of the level set funtion � in this thin zone around the interfae. Thus, intwo dimensions, an O(N2) alulation, where N is the number of grid points per side, redues to an O(kN )alulation, where k is the number of ells in the narrow band. This redution of labor makes the methodtypially muh faster than marker partile methods, due to the need for many marker points per mesh ellin order to obtain aeptable auray. As the front moves, the narrow band must oasionally be rebuilt(known as \re-initialization") of the interfae. For details, see [10, 23, 1℄.7



Sheme 40 Cells 80 Cells 16 CellsNarrow Band 1st Order 125.1 243.5 507.9Full Matrix 1st Order 330.9 1367.5 5657.6Narrow Band 2nd Order 118.8 250.5 547.8Figure 4: Comparative Timings of ShemesBriey, the entire two-dimensional grid of data is stored in a square array. A one{dimensional objet isused to keep trak of whih points in this array orrespond to the tube, and the values of � at those pointsare updated. When the front moves half the distane towards the edge of the tube boundary, the alulationis stopped, and a new tube is built with the zero level set interfae boundary at the enter. Details on theauray, typial tube sizes, and number of times a tube must be rebuilt may be found in [1℄.As an example of the speed up possible using this approah, we ite the results given in [1℄. On a typialtwo-dimensional interfae traking problem, we ompare timings of a �rst and seond order narrow bandapproah with the the full matrix approah; alulations are performed over various grid sizes. Resultsare measured in a rough manner, with optimization turned o� and timing ompared using the Unix timeommand. Thus, the important feature are the ratios. The narrow band alulation is around 10 timesfaster for the �nest alulation than the full matrix solution.3.2 Multiple Interfaes and Triple Point JuntionsAs initially designed in [25℄, the level set tehnique is designed to trak an interfae where there is a leardistintion between an "inside" and "outside". This is beause the interfae is assigned the zero level valuebetween the two regions. Some work has been done on extending the approah to multiple uids; mostlynotably in [5℄ where an extensive study of the motion of triple points was made. In the approah presentedthere, at eah time step the alulation stops, the zero level set is found, and the entire level set funtion isrebuilt using a reinitialization tehnique.In many ases, suh an approah is not neessary; in [34℄ a level approah is given for traking an arbitrarynumber of interfaes in two and three dimensions whih inludes the motion of triple points in some ases.The tehnique presented does not rely on any reinitialization, and retains the essential harateristi of theoriginal approah; the front is only expliitly onstruted for display purposes. Here, we briey review theapproah, for details, see [34℄.The key idea lies in reasting the interfae motion as the motion of one level set funtion for eah material.In some sense, this is what was done in the re-ignition idea given in [26℄. In that approah, the front wasa ame whih propagated downstream under a uid ow, and was re-ignited at eah time step at a ameholder point. This "re-ignition" was exeuted by taking the minimumof the advaning ame and its originalon�guration around the ame holder, thus ensuring that the maximum burned uid is ahieved.Imagine that we have N separate regions, and a full set of all possible pairwise speed funtions FIJ whihdesribe the propagation speed of region I into region J; F is taken as zero if Region I annot penetrate J.The idea is to advane eah interfae to obtain a trial value for eah interfae with respet to motion intoevery other region, and then ombine the trial values in suh a way as to obtain the maximum possiblemotion of the interfae.In general then, we proeed as follows. Given a Region I, we obtain N � 1 trial level set funtions ��IJ8



Fig:5a F ig:5b F ig:5F ig:5d F ig:5e F ig:5fInuene Matrix on A on B on CE�et of A 1.0 3.0 1.0E�et of B 0.0 1.0 2.0E�et of C 0.0 0.0 1.0Figure 5: A into C with speed 1, A into B with speed 3, B into C with speed 2by moving the Region I into eah possible Region J, J=1,N (J 6= I) with speed FIJ . During the motion ofRegion I into Region J, we assume that all other regions are impenetrable. We then test the penetrabilityof the Region J itself, leaving the value of ��IJ unhanged if FIJ 6= 0, else modifying it with the maximumof itself and ���JI . Finally, to allow Region I to evolve as muh as possible, we take the minimum over allpossible motions to obtain the new position; this is the re-ignition idea desribed earlier. Complete detailsof the approah may be found in [34℄.As illustration of our approah, we show two examples. First, we show three regions, desribed as RegionsA, B, and C. Region A grows with speed 1 into Region C, and Region B grows with speed 2. One theyome into ontat, Region A dominates Region B with speed 3, thus Region B grows through Figure 5,and then is "eaten up" by the advaning Region A. Note what happens; Region A advanes with speed 3 tothe edge of Region B, whih is only advaning with speed 1 into Region C. However, Region A annot passRegion B, beause its speed into Region C is slower than that of Region B.Next, we study the motion of a triple point between Regions A, B, and C. We assume that Region Apenetrates B with speed 1, B penetrates C with speed 1, and C penetrates A with speed 1. The exat solutionto this is given by a spiral with no limiting tangent angle as the triple point is approahed. The triple pointdoes not move; instead, the regions spiral around it. In Figure 6, we show the results alulated on a 98x98grid. Starting from the initial on�guration, the regions spiral around eah other, with the leading tip ofeah spiral ontrolled by the grid size. In other words, we are unable to resolve spirals tighter than the gridsize, and hene that ontrols the �ne sale desription of the motion. However, we note that the triple pointremains �xed. 9



Fig:6a T = 0:0 Fig:6b T = 1:0 Fig:6 T = 2:0Fig:6d T = 3:0 Fig:6e T = 4:0 Fig:6f T = 5:0Inuene Matrix on A on B on CE�et of A 1.0 1.0 0.0E�et of B 0.0 1.0 1.0E�et of C 1.0 0.0 1.0Figure 6: Spiraling Triple Point: 98x98 Grid3.3 Fast Reinitialization TehniquesThere are two situations in whih rebuilding the signed distane level set funtion, or "reinitialization" maybe required. The �rst is in the narrow band tehnique, in whih one the front leaves the narrow band a newband must be onstruted. The seond is in situations in whih the veloity of the interfae orrespondingto the zero level does not extend naturally to the other level sets, or gives rise to omplex motion of theother level sets. The issue was �rst disussed in [24℄, in whih the use of the level set method to performimage segmentation led to an image-based speed term whih had no meaning for any other ontour besidesthe interfae itself. Another example of this problem is in simulations of the motion of a uid boundarybetween two uids with large density di�erenes. While the uid veloity is a natural andidate for thespeed funtion of all the level sets, it is easy to see that this is a poor hoie; the uid veloity in the lighteruid an be orders of magnitude larger than that in the heavier uid, giving rise to wild gradients in thelevel set motions of ontours neighboring the zero level set. Consequently, one is faed with two approahes.The �rst approah is devise an extension speed funtion whih, although having no real physial meaningaway from the interfae itself, behaves appropriately for the other level sets and has the orreting limitingvalue on the zero level set. This is the approah taken in [33℄. The seond approah is to simply use anyonvenient veloity �eld (for example, the uid veloity in the two-uid problem), and then re-initialize thelevel set funtion periodially to rebuild the level sets around the position of the zero level set.This is the approah taken in [10℄, in whih the level set funtion is rebuilt in a small band about thefront by �rst �nding the front expliitely and then reomputing the signed distane from this front at allgrid points in the narrow band around the front. An alternative tehnique was introdued and employed in10



[9℄; in that work, the level set funtion was rebuilt by solving the assoiated equation�t = S(�)(1 � jr�j) (16)where S(�) is the sign of �. By solving this equation until steady-state onvergene, the left hand sidebeomes zero and the resulting value of r� beomes one, whih orresponds to a initialization of � by thedistane funtion.This tehnique an be made eÆient; however, sine the swith funtion given by S(�) only hoosesdiretion on the basis of values on the grid, muh of the sub-grid information about the loation of theinterfae is lost. This is beause the use of the sign funtion pays no attention to the atual loation of thezero level set within a partiular ell, whih an be seen by onsidering a simple one-dimensional example.Instead, we use an alternate tehnique, �rst disussed in [31℄, desribed in [34℄, and used extensively in[2, 3℄. Suppose that at some time one has a level set funtion � whose zero level set orresponds to theposition of the interfae. The goal is to rebuild the level set funtion without disturbing the zero level setso that the new funtion orresponds to the signed distane funtion. We do this as follows. First, ow thelevel set funtion forward in time with speed funtion F = 1, and measure the time when the value of � ateah grid point ahead of the front (that is, for all values of � > 0) hanges sign. The time when the signhanges learly orresponds to the distane to the front by Huyghen's priniple, see [28℄. Seond, repeat theproess by owing the front bakwards, that is, with speed F = �1 and again ompute the zero rossingtime.This proedure results in a highly aurate rebuilding of the signed distane funtion around the zerolevel set orresponding to the interfae. It an be performed using a high order method, and is extremelyfast if one hooses a large time step near the edge of the Courant ondition. We use it in all level set methodsrequired reinitialization. For details, see [34℄.4 Interfae Problems in CFD and Material SieneIn this setion, we disuss some reent appliations of the level set tehnique to a variety of problems in CFDand material proessing.4.1 Generation of Body-�tted Logially Retangular GridsThe generation of logially retangular grids around and inside omplex bodies is still an art. While unstru-tured meshes may be obtained in a relatively automated fashion, many alulations require the aurayof a logially retangular, body-�tted grid. For example, high Reynolds turbulent ow requires an au-rate, body-�t grid in the boundary layer where gradients are steep and a highly aurate sheme is ritial.Standard tehniques in logial retangular boundary-�tted grid generation fall under four general ategories.Hyperboli grids marh out from the boundary. Algebrai grids adjust nodes until a desired shape is ahieved.Ellipti grids solve an assoiated ellipti partial di�erential equation,and variational methods minimize er-tain funtionals. Grids obtained through these tehniques an be plagued by olliding grid lines, inability tohandle sharp orners in the bodies, and diÆulty extending to three spae dimensions.Reently, level set tehniques have been applied to grid generation in two and three dimensions, [31℄.Here, we review some of that work; for details see [31℄.The tehnique hinges on viewing the boundary of thebody as a propagating front. The front is then allowed to propagate with a speed law that ensures that it11



will smoothly evolve from the body in suh a way that the position of the front yields one set of oordinatelines. The judiious hoie of speed funtion produes a geometry-owing interfae whih is guaranteedto handle usps and orners, produe smooth ontours, and trivially extend to three spae dimensions.Lines orthonormal to the propagating, body-�tted, level-set lines are obtained by following the trajetoriesof partiles propagating with a speed funtion dependent on the loal urvature and emanating from theboundary.Using this approah, the resulting algorithm generates two and three dimensional interior and exte-rior grids around reasonably omplex bodies whih may ontain sharp orners and signi�ant variationsin urvature. We have also used these tehniques to produe non-uniform solution-adaptive meshes andboundary-�tted moving grids. The algorithm is ompletely automati; the only user-supplied grid-dependentparameters are the shape of the initial boundary, and the time step spaing for the evolving front funtion.In Figure 7, we show the results of this appliation. In Figure 7a, a two-dimensional external grid is pro-dued around a fairly omplex objet; in Figure 7b, an internal grid is omputed. Finally, in Figure 7, athree-dimensional grid is obtained. In the exterior grid ases, a speed funtion was hosen of the generiform 1 � �K, where K is the urvature; in the ase of the interior grid, the speed funtion was hosen asF = min(Æ;K), where Æ is a threshold value hosen to ensure that every point of the body moves inwardswith some minimum speed. Without suh a fator, points on non-onvex boundaries would �rst evolveoutwards at some points, whih violates the ability of the algorithm to reate a grid.The above approah is automati, inexpensive, and requires no omplex alteration in three-dimensions.To extend it to multiple bodies, urrent work is aimed at using the above level set approah to grid generationto generate a logially retangular grid near eah body (for example, in the boundary layer and past), andthen take these grids as input to more traditional tehniques whih an grid multiple bodies, but annotaess omplex shapes in an automati fashion. Thus, the approah is a marriage of the level set algorithmto generate an aurate near-body grid whih yields a smoother, almost onvex shape, and a traditionalmethodology whih will path these smooth grids together. For details of this approah, see [32℄.4.2 Flame Propagation and CombustionLevel set methods have been used to trak ombustion and ame fronts; here, we report on two suhalulations. First, in [26℄, the method is used to the study the stability of a ame attahed to a ameholder. Here, the e�ets of upstream turbulene, exothermi e�ets due to volume expansion along theame front, ame speed dependene on urvature, and vortiity prodution along the ame front due to thebarolini term as manifested through ame streth are all onsidered. The model uses the level set methodto trak the position and urvature of the evolving ame, produing internal boundary onditions for theame-indued exothermi and barolini veloity �elds. In Figure 8 we show two e�ets; �rst, in Fig.8a,taken from [26℄, an inoming upstream turbulene �eld interats with exothermi prodution along the amefront. Suessive time photos are superimposed, showing the width of ame brush. In Fig.8b, the e�ets ofvortiity prodution along the ame front is added; in this ase, the inoming turbulene �eld streths andontorts the ame whih then auses ame streth, induing vortiity whih self-wrinkles the ame. Thise�et is seen in the widening of the ame brush.Next, we show the results of simulations in [36℄, in whih a level set method to trak ombustion regionsis oupled to a projetion method for the inompressible ow �eld. In Figure 9, taken from [36℄, we showignition at the enter of a doubly periodi shear jet; the ame propagates with a speed that depends on theloal urvature. The results show the ability of the level set method to follow sharp orners, trak usps,12



Figure 7: Level Set Approah to Grid Generation13



Exothermi Only Exothermiity and BaroliniityFigure 8: Stability of Flame Under Exothermi and Barolini E�etsand hange topology.4.3 Crystal Growth and Dendriti Solidi�ationIn [33℄, level set methods were used to ompute the motion of omplex solid/liquid boundaries in rystalgrowth. The model inludes physial e�ets suh as rystalline anisotropy, surfae tension, moleular kinetisand underooling. The fundamental oupling is due to a single history-dependent boundary integral equationon the solid/liquid boundary developed by Strain [35℄. The setup of the problem is as follows; a superooledliquid is plaed within a ontainer, and a small solid seed disturbane is plaed in the enter. This initiates arapid and unstable dendriti solidi�ation problem, in whih the solid phase sends branhing �ngers into thedistant ooler liquid near the underooled walls. Hene the problem beomes a moving boundary problem, inwhih the temperature �eld satis�es a heat equation in eah phase, oupled through two boundary onditionson the unknown moving solid/liquid boundary, as well as initial and boundary onditions.Numerial experiments were performed in [33℄ by oupling the level set method to the boundary integralformulation, and showed the evolution of ompliated shapes with spikes and orners, topologial hangesin the solid-liquid boundary, dendrite formation and sidebranhing. In Figure 10, we show the results ofone suh alulation, obtained by slowing inreasing the latent heat of formation. The results show that asthis term is inreased, the front beomes markedly unstable as it is drawn to the side walls, and produessigni�ant side-branhing and tip splitting.4.4 Mirofabriation of Eletroni Components: Ething, Deposition, and Lithog-raphyFinally, we show the appliation of level set tehniques to problems in ething, deposition and photolithogra-phy, whih are our in the manufature of eletroni omponents. In [2, 3℄, the e�ets of three dimensionalething and deposition under the e�ets of visibility, diretional, and soure ux funtions, evolution of14



Figure 9: Combustion in Doubly-Periodi Shear Layer
Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10d: 96x96: Dt=.00125: Hlat=1.0Figure 10c: 96x96: Dt=.00125: Hlat=.916Figure 10c: 96x96: Dt=.00125: Hlat=.916Figure 10c: 96x96: Dt=.00125: Hlat=.916Figure 10c: 96x96: Dt=.00125: Hlat=.916
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Figure 10: E�ets of Latent Heat on Dendriti Growth in Solidi�ation15



Figure 11: Pro�le Obtained under Photolithographylithographi pro�les, disontinuous eth rates through multiple materials, and non-onvex sputter yield uxfuntions are onsidered.In this appliation, the goal is to follow the evolution of a material surfae pro�le under the e�ets of:� Deposition: in whih partiles are deposited on the surfae, ausing build-up in the pro�le, eitherthrough isotropi (\wet" deposition) or under diretional deposition,� Ething: Partiles remove material from the evolving pro�le boundary. The material may be isotropi-ally removed, known again as hemial or \wet" ething, or hipped away through reative ion ething,also known as \ion milling",� Lithography: in whih the underlying material is treated by an eletromagneti wave whih alters theresist property of the material.We show the results of two simulations. First, in Figure 11, we show the three-dimensional resist sur-fae obtained under a rate funtion obtained through a bleah proess. The level set method traks theundulations in the evolving pro�le driven by the underlying standing eletromagneti wave.Finally, in Figure12, we show results of a saddle surfae being ethed away under a non-onvex sputtereth law of the form F = [1 + 4 sin2(�)℄ os(�) where � meaures the angle between the surfae normal andthe vertial diretion. This motion gives rise to faeting at orners and unusual rarefation strutures. Suha speed law is used in sputter ething, in whih enhaned diretionality is desired.Aknowledgements: All alulations were performed at the University of California at Berkeley andthe Lawrene Berkeley Laboratory. 16
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