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Abstract. Let g be a reductive Lie algebra over an algebraically closed field of
characteristic zero, and k be a subalgebra reductive in g. We prove that g admits
an irreducible (g, k)-module M which has finite k-multiplicities and which is not a
(g, k′)-module for any proper inclusion of reductive subalgebras k ⊂ k′ ⊂ g, if and
only if k contains its centralizer in g. The main point of the proof is a geometric
construction of (g, k)-modules which is analogous to cohomological induction. For
g = gl (n) we show that, whenever k contains its centralizer, there is an irreducible
(g, k)-module M of finite type over k such that k coincides with the subalgebra of
all g ∈ g which act locally finitely on M . Finally, for a root subalgebra k ⊂ gl (n),
we describe all possibilities for the subalgebra l ⊃ k of all elements acting locally
finitely on some M .
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1. Introduction

Let g be a reductive Lie algebra over an algebraically closed field of characteristic
zero and k ⊂ g be a subalgebra reductive in g. In his program talk [G], I. Gelfand
has introduced the notion of a (g, k)–module with finite k–multiplicities. The present
paper focuses on a new notion relevant to Gelfand’s program: we call k primal if g

admits an irreducible (g, k)-module with finite k-multiplicities which is not a (g, k′)-
module for any proper inclusion of reductive subalgebras k ⊂ k′ ⊂ g. Our central
result is that k is primal if and only if k contains it centralizer in g, or equivalently,
if and only if k is a direct sum of a semi-simple subalgebra k′ in g and a Cartan
subalgebra of the centralizer C(k′) in g. This provides a complete description of all
primal subalgebras, as the semi-simple subalgebras of a reductive Lie algebra have
been classified by E. Dynkin, [D].

Here is a brief account of our motivation. It is common wisdom that classifying all
irreducible representations of a reductive Lie algebra g is not a well-posed problem.
In contrast with that, classifying irreducible representations with natural finiteness
properties has remained a core problem in representation theory since the work of
E. Cartan and H. Weyl. A landmark success has been the celebrated classification
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of Harish-Chandra modules (see [V], Ch. 6 and [KV], Ch. 11). Several years ago
O. Mathieu (following up on work of S. Fernando and others) obtained a different
classification: of irreducible weight modules with finite-dimensional weight spaces,
[M]. In [PS] it was noticed that both these classifications are particular cases of
the problem of classifying irreducible g-modules which have finite type over their
Fernando-Kac subalgebra. The Fernando-Kac subalgebra g [M ] associated to an ir-
reducible g-module M is by definition the set of all elements in g which act locally
finitely on M . The fact that g [M ] is a Lie subalgebra in g was rediscovered inde-
pendently several times (see [F], [K], [J]). As A. Joseph pointed to us that this fact
is an easy consequence of B. Kostant theorem published in [GQS]. Furthermore, M
is of finite type over a given subalgebra l ⊂ g [M ] if the multiplicity of an arbitrary
fixed irreducible l-module in any (varying) finite-dimensional l-submodule of M is
bounded. The subalgebra l is called a Fernando-Kac subalgebra of finite type if g

admits an irreducible g-module M with g [M ] = l which is of finite type over l. The
problem of classifying all, not necessarily reductive, Fernando-Kac subalgebras of fi-
nite type is of fundamental importance for the structure theory of g-modules. In this
article we classify the reductive parts of Fernando-Kac subalgebras of finite type, as a
subalgebra is primal if and only if it is a reductive part of a Fernando-Kac subalgebra
of finite type.

A short outline of the paper is as follows. In Section 3 we establish some necessary,
(but in general not sufficient) conditions for a subalgebra l ⊂ g to be a Fernando-Kac
subalgebra of finite type. We show in particular that a Fernando-Kac subalgebra of
finite type l is algebraic and admits a natural decomposition l = lred⊃+ nl, where lred is
a reductive in g subalgebra which contains its centralizer, and nl is a nilpotent ideal
in l. We also characterize completely all solvable Fernando-Kac subalgebras of finite
type in g. In Section 4 we fix an arbitrary algebraic subalgebra k, reductive in g, and
construct irreducible (g, k)-modules M of finite type over k. The construction of M is
a D-module version of cohomological induction: M equals the global sections of a Dµ-
module supported on the preimage in G/B of K · P ⊂ G/P for a suitable parabolic
subgroup P ⊂ G. Here G is a connected algebraic group with Lie algebra g and K
is a subgroup with Lie algebra k. We show then, that if k contains its centralizer
in g , g [M ]red = k for some M . Therefore, k is primal if and only if it contains its
centralizer. Furthermore, as a corollary we obtain that any semi-simple subalgebra
of g is the derived subalgebra of a primal subalgebra, and that every maximal (not
necessarily reductive) subalgebra is a Fernando-Kac subalgebra of finite type. In
Section 5 we consider in more detail the case g = gl (n). We prove that here any
primal subalgebra k is itself a reductive Fernando-Kac subalgebra of finite type, and
also give an explicit description of all Fernando-Kac subalgebras of finite type which
contain a Cartan subalgebra.

In conclusion, for an arbitrary reductive Lie algebra g, we give a complete descrip-
tion of all primal subalgebras k ⊂ g, and for each primal subalgebra k we construct
certain “series” of irreducible (g, k)-modules of finite type over k. A direct comparison
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with known results in the case of a symmetric pair (g, k), shows that the (g, k)-modules
obtained by our construction are only a part of all irreducible (g, k)-modules. Conse-
quently the problem of classifying all irreducible (g, k)-modules of finite type over an
arbitrary primal subalgebra k ⊂ g is still open.

2. General preliminaries

The ground field F is algebraically closed of characteristic zero. If X is a topological
space and F is a sheaf of abelian groups on X, then Γ (F) denotes the global sections
of F on X. If f : X → Y is a continuous map of topological spaces, f−1 denotes
the topological inverse image functor from sheaves on Y to sheaves on X. If X is
an algebraic variety, OX stands for the structure sheaf of X, and if f : X → Y is a
morphism of algebraic varieties, f∗ (respectively f∗) denotes the inverse image (resp.
direct image) functor of O-modules. A multiset is defined as a map from a set Y
into Z+∪∞, where Z+ := {0, 1, 2, 3, ...}, or, more informally, as a set whose elements
have finite or infinite multiplicities.

Throughout this paper g is a fixed reductive Lie algebra, and G stands for a
connected algebraic group with Lie algebra g. Denote by C (l) (respectively N (l))
the centralizer (respectively normalizer) of a subalgebra l ⊂ g. Furthermore, U (l)
stands for the universal enveloping algebra of l, Z (l) stands for the center of l, rl

stands for the solvable radical of l, and nl stands for the maximal ideal in l which
acts nilpotently on g. The sign ⊂+ denotes the semi-direct sum of Lie algebras, and
lss is a Levi component of l. If l is reductive, then lss simply equals the derived
subalgebra [l, l]. For a Borel subalgebra b ⊂ g which contains a Cartan subalgebra
h, ρb denotes as usual the half-sum of the roots of b.

By definition a g-module M is a (g, l)-module if l ⊂ g [M ]. M is a strict (g, l)-
module if l = g [M ]. We also need the following definition from [PS]: M is an isotropic

(g, l)-module if for each 0 6= m ∈ M the set of elements g ∈ g acting finitely on m
coincides with l. An irreducible strict (g, l)-module is automatically isotropic.

The following statement is a reformulation of Lemma 1 in [PS].

Lemma 2.1. Let h be a Cartan subalgebra in g, l ⊃ h be a solvable subalgebra and
M be an isotropic strict (g, l) of finite type over h. Then there exists a parabolic
subalgebra q ⊂ g with g = l + q, q ∩ l = h, and such that the semisimple part of q is
a direct sum of simple Lie algebras of types A and C .

3. Necessary conditions for l to be of a Fernando-Kac subalgebra of

finite type

Theorem 3.1. Let l ⊂ g be a Fernando-Kac subalgebra of finite type.

(1) N (l) = l; hence l is an algebraic subalgebra of g.
(2) There is a decomposition l = nl⊂+ lred, unique up to an inner automorphism

of l, where lred is a (maximal) subalgebra of l reductive in g.
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(3) Any irreducible (g, l)-module M of finite type over l has finite type over lred

and lred acts semi-simply on M .
(4) C (lred) = Z (lred), and Z (lred) is a Cartan subalgebra of C (lss).
(5) l ∩ C (lss) is a solvable Fernando-Kac subalgebra of finite type of C (lss).

Proof. Let M be an irreducible strict (g, l)-module and M0 ⊂ M be an irreducible
finite-dimensional l-submodule. To prove 1, assume that N (l) 6= l. Then one can
choose x ∈ N (l) \l such that [x, lss] = 0 for a fixed Levi decomposition l = lss⊃+ rl.
Since x /∈ l, x acts freely on any non-zero vector in M . Set

Mn := M0 + x · M0 + x2 · M0 + ... + xn ·M0

A simple calculation, using [x, lss] = 0 and [x, rl] ⊂ rl, shows that Mn is l-invariant
and Mn/Mn−1 is isomorphic to M0 as an l-module. Therefore the multiplicity of M0

in M is infinite. Contradiction. To show the algebraicity of l, consider the normalizer
J of l in G. The Lie subalgebra of g corresponding to J is N(l). Hence, N(l) = l is
an algebraic subalgebra of g.

Claim 2 follows from 1 via some well known statements. For instance, Corollary
1 in [B], §5 implies that a self-normalizing subalgebra l is splittable, i.e. for y ∈ l

the semi-simple and nilpotent parts of y are contained in l. Proposition 7 in [B] , §5
claims that any splittable subalgebra has a decomposition as required in 2.

To prove 3 note first that M is a quotient of the induced module U (g)⊗U (l) M0. As
the adjoint action of lred on U (g) is semi-simple, lred acts semi-simply on U (g)⊗U (l)

M0, and therefore also on M . Now note that there exists ν ∈ n∗l such that

x · m = ν (x)m

for any m ∈ M0 and x ∈ nl. Since the adjoint action of nl on U (g) is locally nilpotent,
we obtain that, for any x ∈ nl, x−ν (x) acts locally nilpotently on U (g)⊗U (l)M0, and
hence on M . Therefore nl acts via the character ν on any irreducible l-subquotient of
M , and consequently two irreducible l-subquotients of M are isomorphic if and only
if they are isomorphic as lred-modules. This implies that M has also finite type over
lred, and 3 is proved.

4. By 2 any irreducible strict (g, l)-module M has an lred-decomposition

M = ⊕iM
′
i

for finite-dimensional isotypic components M ′
i . Clearly each M ′

i is C (lred)-invariant,
and, as it is finite-dimensional, C (lred) ⊂ g [M ] = l. Note that C (lred)∩ l is solvable.
Consequently, since C (lred) = C (lss) ∩ C (Z (lred)) ⊂ l, the centralizer of Z (lred) in
C (lss) is solvable. On the other hand, as C (lss) is reductive and Z (lred) is reductive in
C (lss), the centralizer of Z (lred) in C (lss) is reductive. Therefore Z (lred) coincides
with its centralizer in C (lss). This implies that C (lred) = C (lss) ∩ C (Z (lred)) =
Z (lred), and that Z (lred) is a Cartan subalgebra of C (lss).
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To show 5 decompose M as

M = ⊕i (Mi ⊗ Vi) ,

where Mi are pairwise non-isomorphic irreducible lss-modules, and Vi are C (lss)-
modules. Then each Vi is a strict isotropic (C (lss) , l ∩ C (lss))-module of finite type
over l∩C (lss) . Furthermore l∩C (lss) is solvable, and 5 follows from Lemma 2.1. �

The conditions in Theorem 3.1 are not sufficient for l to be a Fernando-Kac sub-
algebra of finite type: see the Example in subsection 5.3. In general, the problem
of a complete characterization of a Fernando-Kac subalgebra of finite type is open.
However, for a solvable l we have the answer.

Proposition 3.2. A solvable subalgebra l ⊂ g is a Fernando-Kac subalgebra of
finite type if and only if l = h⊃+ nl, where h is a Cartan subalgebra of g and nl is the
nilradical of a parabolic subalgebra of g whose simple components are all of types A
and C .

Proof. Here lss = 0, C (lss) = g, and Theorem 3.1 4 implies that h := lred is a Cartan
subalgebra of g. The claim of the Corollary follows now immediately from [PS], Sect.
3 where a criterion for l to be a Fernando-Kac subalgebra of finite type is established
under the assumption that l ⊃ h. �

Note that Theorem 3.1 3, applied to a solvable l, yields that any strict irreducible
(g, l)-module of finite type over l is a weight module with finite-dimensional weight
spaces. Such modules are classified by O. Mathieu in [M]. More precisely, any
irreducible weight module M with finite-dimensional weight spaces is the unique
irreducible quotient of an induced module U (g) ⊗U (p) Mnp , where p is a parabolic
subalgebra and Mnp is the p-submodule of np-invariants in M . The Fernando-Kac
subalgebra g [M ] of M equals (g [M ] ∩ pred)⊃+ np, and it is solvable if and only if
g [M ]∩pred is a Cartan subalgebra of g (in general g [M ]∩pred is the semi-direct sum
of a Cartan subalgebra and an ideal in pss).

4. A construction of irreducible (g, k)-modules of finite type

4.1. A geometric set up. Let k ⊂ g be an algebraic subalgebra, reductive
in g and such that kss is proper in gss. Denote by K the subgroup of G with Lie
algebra k, and let Kss be the subgroup corresponding to kss. By HK we denote a
fixed Cartan subgroup of K, with Lie algebra hk. Fix an element h ∈ hk such that
C(Fh) ⊂ C(hk∩ kss) and for which the operator adh : g → g has rational eigenvalues.
The element h defines the parabolic subalgebra

(4.1) p := ⊕γ≥0g
γ
h,

where g
γ
h is the γ-eigenspace of adh : g → g. Clearly bk := p∩ k is a Borel subalgebra

of k containing hk. Let P be the subgroup of G corresponding to p and B ⊂ P be
a Borel subgroup of G such that BK = B ∩ K has Lie algebra bk. Set X := G/B,
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Y := G/P and let π : X → Y be the natural projection. Denote by S the K-orbit of
the closed point in Y corresponding to P , and put V := π−1 (S).

Lemma 4.1. V ∼= S × Z, where Z := P/B.

Proof. V is a relative flag variety over S wtih fiber Z = P/B ∼= Pss/(Pss ∩ B).
Moreover, V = Kss ×Kss∩P Z. By our assumption on K and P , Kss ∩ Pss is the
identity element. Hence the action of Kss ∩P on Z is trivial, and the bundle V → S
is trivial. �

4.2. D-module preliminaries. For any µ ∈ h∗ let Dµ denote the twisted sheaf of
differential operators on X defined in [BB]. A Dµ-module is by convention a sheaf F
of Dµ-modules on X which is quasicoherent as a sheaf of OX -modules. The support
of F is the closure of the subvariety of all closed points for which the sheaf-theoretic
fiber of F is non-zero. A weight µ ∈ h∗ defines the character θµ of the center of U (g)
via the Harish-Chandra map (see [B], §6).

When the ground field F is arbitrary, by a dominant weight we mean an element
µ ∈ h∗ whose value on all B-positive co-roots is a nonnegative rational number. For
F = C it suffices that the value has nonnegative real part. The Beilinson-Bernstein
localization theorem claims that, for a regular dominant µ, the functor of global
sections

Γ: Dµ-mod → U (g) / (ker θµ) -mod

is an equivalence between the category of Dµ-modules and the category of U (g) / (ker θµ)-
modules, where (ker θµ) stands for the two-sided ideal in U (g) generated by the kernel
of the central character θµ. The inverse equivalence (usually referred to as localiza-
tion) is given by the functor

R 7→ Dµ ⊗Γ(Dµ) R,

where the U (g) / (ker θµ)-module R is endowed with a Γ(Dµ)-module structure via
the natural isomorphism U (g) / (ker θµ) → Γ(Dµ), see [BB].

Let i : W → X define a non-singular locally closed subvariety of X; we denote by
Dµ

W the sheaf of right i∗Dµ-module endomorphisms of the inverse image sheaf i∗Dµ

which are left OW -module differential operators. Furthermore, the inverse image
functor i∗ of O-modules yields a functor

i⋆ : Dµ-mod → Dµ
W -mod.

If W is a closed subvariety we will also consider the direct image functor

i⋆ : Dµ
W -mod → Dµ-mod,

F 7→ Dµ
←W ⊗Dµ

W
F ,

where Dµ
←W := i⋆ (Dµ ⊗OX

Ω∗X)⊗OW
ΩW and Ω stands for volume forms. Kashiwara’s

theorem claims that i⋆ is an equivalence between the category of Dµ
W -modules and
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the category of Dµ-modules supported in W . It will also be important for us that
the sheaf i−1i⋆F has a natural OW -module filtration with successive quotients

(4.2) Λmax
(
NW |X

)
⊗OW

Si
(
NW |X

)
⊗OW

F ,

where i ∈ Z+, NW |X denotes the normal bundle of W in X, Si stands for i-th
symmetric power and Λmax stands for maximal exterior power.

In [PS] the following lemma is proven.

Lemma 4.2. If Q is the support of a Dµ-module, then g [Γ (F)] ⊂ Stabg Q, where
Stabg Q is the Lie algebra of the subgroup of G which stabilizes Q.

4.3. The construction. Let L be an irreducible (p, hk)-module of finite type over
hk with trivial action of np + (Z(pred) ∩ kss) and with pred-central character θν

pred
for

some Pss ∩ B-dominant weight ν ∈ h∗. Z = P/B is naturally a non-singular closed
subvariety of X = G/B. Consider the sheaf Dη

Z , where η = ν + ρb∩p{red
− ρb. Set

L := Dη
Z ⊗Γ(Dη

Z) L. Let OS (ζ) be the invertible Kss-sheaf of local sections on S of

the line bundle K ×K∩P

(
Fw(ζ)

)
, where w is the longest element in the Weyl group of

kss, ζ is a kss-integral weight in h∗ and Fµ stands for the one-dimensional hk–module
of weight µ. Then F := OS (ζ) ⊠ L is a Dµ

V -module for µ = ζ + η, and M = i⋆F is
a Dµ-module. Finally, set M = Γ(M).

Theorem 4.3. Assume that ζ is dominant and µ is regular and dominant. Then

(1) M is an infinite-dimensional irreducible g-module;
(2) g [M ] = kss⊃+ mL, where mL is the maximal kss-invariant subspace in p [L];

furthermore g [M ] is the unique maximal subalgebra in p [L]+k which contains
k;

(3) M is a (g, k)-module of finite type over k.

Proof. Dη
Z is a sheaf of twisted differential operators on the flag variety Z. By the

Beilinson-Bernstein theorem applied to Z, L is an irreducible Dη
Z-module. Further-

more, F is an irreducible Dµ
V -module. Since V is a non-singular closed subvariety,

M is an irreducible Dµ-module by Kashiwara’s theorem. Finally, by the Beilinson-
Bernstein theorem applied to X, M = Γ(M) is an irreducible g-module. 1 is proven.

To prove 2 consider the subalgebra Stabg Q, where Q is the support of the Dµ-
module M. Note that Q ⊂ V and that V = π−1(π(Q)). Hence, Stabg Q is a
subalgebra of st := Stabg V . One can check easily that

(4.3) st = kss⊃+ m,

where m is the maximal kss-invariant subspace in p. Thus st is a maximal subalgebra
in k + p containing k. By Lemma 4.2, g [M ] ⊂ Stabg Q ⊂ st and therefore g [M ] =
st [M ].

Recall now that by (4.2) i−1M = i−1i⋆F (considered as an st-sheaf) has a natural
st-sheaf filtration with successive quotients

Λmax
(
NV |X

)
⊗OV

Si
(
NV |X

)
⊗OV

F .
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In particular, M0 := Λmax
(
NV |X

)
⊗OV

F is a subsheaf of i−1M. As NV |X
∼= NS|Y ⊠

OZ , Λmax
(
NV |X

)
∼= OS (τ ) ⊠ OZ , where τ = −w

(∑
α∈∆(np) α

)
− 2ρb∩kss . Therefore

M0
∼= OS (τ + ζ) ⊠L and

M0 := Γ (M0) ∼= Γ(π∗M0) ∼= Γ(OS (τ + ζ)) ⊗ L.

Both weights τ and ζ are dominant. Hence τ + ζ is kss-dominant, M0 6= 0, and by
the irreducibility of M ,

(4.4) g [M ] = st [M ] = st [M0] .

To calculate st [M0] we use that Γ (M0) ∼= Γ(π∗M0). Observe that π∗M0 is the
sheaf of sections of the induced vector bundle Kss ×Kss∩P

(
Fw(ζ+τ ) ⊗ L

)
. The latter

is a Kss-sheaf, hence kss ⊂ st [M0]. By (4.3) and (4.4), g [M ] = kss⊃+ mL, where
mL = g [M ] ∩ m. To calculate mL, let’s write down the action of m on Γ (π∗M0).
An element of Γ (π∗M0) is a function φ : Kss → Fw(ζ+τ ) ⊗ L satisfying the condition
φ(ab) = b−1φ(a) for all a ∈ Kss, b ∈ Kss ∩ P . For x ∈ m and a ∈ Kss we have

(4.5) (Lxφ) (a) = Ad−1
a (x) (φ (a)) ,

where Lxφ stands for the action of x on φ. This formula immediately implies that

mL ⊂
{
x ∈ m | AdKss (x) ⊂ m

[
Fw(ζ+τ ) ⊗ L

]
= m [L]

}
.

To see that mL is equal to the right hand side, let U be a unipotent subgroup of Kss

complementary to Kss ∩P . U acts simply transitively on an open dense subset of S.
Consider a U -invariant function f : Kss → L. For any a ∈ U we have f(a) = f(1).
Let x be in m[L] and assume x is AdU -invariant. Then by (4.5), x acts locally finitely
on f , and, by the irreducibility of M , x acts locally finitely on M . Finally, any y
obtained from x by the action of Kss also acts locally finitely on M . Hence

(4.6) mL =
{
x ∈ m | AdKss (x) ⊂ m

[
Fw(ζ+τ ) ⊗ L

]
= m [L]

}
.

In other words, mL is the maximal pss-invariant subspace in m[L], or equivalently in
p[L]. Consequently kss⊃+ mL is the maximal subalgebra in k + p [L] containing k, and
2 is proven.

It remains to prove 3. Let j : S → Y be the natural embedding. Observe that the
isomorphism NV |X

∼= NS|Y ⊠ OZ yields an isomorphism of k-sheaves

j−1j⋆OS (ζ) ⊠ L ∼= i−1i⋆(OS (ζ) ⊠ L) ∼= i−1M.

Therefore we have an isomorphism of k-modules

Γ (M) ∼= Γ(π∗M) ∼= Γ(j⋆OS (ζ)) ⊗ L,

where the action of kss on L is trivial and the action of Z (k) is induced by the
embedding Z (k) ⊂ pred. By (4.2) j−1j⋆OS (ζ) has a filtration by k-sheaves with
successive quotients

Si
(
NS|Y

)
⊗OS

OS (ζ + τ ) .
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Consequently, M has a k-module filtration whose associated graded k-module is a
submodule of

Γ
(
S ·

(
NS|Y

)
⊗OS

OS (ζ + τ )
)
⊗ L.

The sheaf S ·
(
NS|Y

)
⊗OS

OS (ζ + τ ) is locally free on S, and has a filtration with
invertible successive quotients OS (κ), where κ runs over the multiset Θ of weights in
h∗k

Θ = {ζ + τ +
∑

nα∈N

nαα | nα ∈ Z+}.

Here we take the summation over all weights α of the hk-module np/ (np ∩ k). Thus the
multiplicity of the irreducible k-module with the highest weight κ in M is majorized
by the multiplicity of κ in Θ + ΘL, where ΘL is the multiset of hk-weights of L. Our
goal is to show that the multiset Θ + ΘL has finite multiplicities. For any multiset
C ⊂ h∗k and t ∈ F , set C t := {κ ∈ C | κ (h) = t}. Then ΘL = Θt0

L for some t0 ∈ F ,
and (Θ + ΘL)t = Θt−t0 +ΘL. As L has finite type over hk, ΘL has finite multiplicities.
Furthermore, Θt−t0 is a finite multiset as α (h) are all positive. Therefore (Θ + ΘL)t

has finite multiplicities, and thus Θ + ΘL also has finite multiplicities. Theorem 4.3
is proven. �

The construction in Theorem 4.3 does not provide all irreducible (g, k)-modules
of finite type over k. Consider for instance the case when k is symmetric, i.e. k is
stable under an involution of g. Here irreducible (g, k)-modules of finite type over k

are nothing but Harish-Chandra modules. The Beilinson-Bernstein classification of
Harish-Chandra modules implies that the supports of their corresponding localiza-
tions (the latter are Dµ-modules on X = G/B) run over the closures of all K-orbits
in X. In particular, there are infinite-dimensional Harish-Chandra modules whose
localizations are supported on the closure X of the open orbit of K in G/B. These
latter modules do not appear among the modules constructed in Theorem 4.3, as all
Dµ-modules M considered above are supported on a closed proper subvariety of X.

4.4. Description of primal subalgebras.

Theorem 4.4. Let k be a reductive in g subalgebra with C (k) = Z (k). Then k is
primal, i.e. there exists a Fernando-Kac subalgebra l ⊂ g such that lred = k. In
addition, l can be chosen so that nl is the nilradical of a Borel subalgebra of C(kss).

Proof. The assumption C (k) = Z (k) implies that Z (k) is a Cartan subalgebra of
C (kss). Let h′ be a semisimple element in kss such that C (Fh′) = C (hk ∩ kss) and
adh′ : g → g has rational eigenvalues γ′i. Let furthermore h′′ ∈ Z (k) be a regular
element in C (kss) for which adh′′ : g → g has rational eigenvalues γ′′j , and such that

(4.7) |γ′′j | < min
γ′

i 6=0
|γ′i|

for all j. Denote by p the parabolic subalgebra of g defined by the element h := h′+h′′

and let L be a 1-dimensional p-module. Theorem 4.3 applies to the triple (k, p, L) (as
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k is automatically algebraic) and hence yields an irreducible (g, k)-module M of finite
type over k. Put l := g [M ]. Then l = kss⊃+ m, where as in the proof of Theorem 4.3
m is the maximal kss-invariant subspace in p. Let κ be the p ∩ kss-lowest weight of
an irreducible kss-submodule in m. We have κ (h′) = γ′i ≤ 0 for some i. On the other
hand, as m ⊂ p, κ (h′ + h′′) ≥ 0. Condition (4.7) gives κ (h′) = 0, i.e. m = C (kss)∩p.
As h′′ is regular in C (kss), m is a Borel subalgebra in C (kss), hence m is solvable and
m = Z (kss) + [m, m]. Therefore lred = k, nl = [m, m] and [nl, kss] = 0. �

Corollary 4.5. A reductive in g subalgebra k is primal if and only if C (k) = Z (k).

Proof. The statement follows directly from Theorem 4.4 and 3.1 4. �

Corollary 4.5, together with the remark that k is primal if and only if k = lred

for a Fernando-Kac subalgebra of finite type, reduces the problem of classifying all
Fernando-Kac subalgebras of finite type to the problem of describing all nilpotent
subalgebras n such that k⊃+ n is a Fernando-Kac subalgebra of finite type, k being
a fixed primal subalgebra of g. The latter problem is open, and in particular we
don’t know whether each primal subalgebra itself is a Fernando-Kac subalgebra of
finite type. In the next section we solve the problem in the case when g = gl(n)
and k is a root subalgebra, and show also that every primal subalgebra of gl(n) is a
Fernando-Kac subalgebra of finite type.

We conclude the present section by the following corollary.

Corollary 4.6. If g = gss, every maximal proper subalgebra l ⊂ g is a Fernando-Kac
subalgebra of finite type.

Proof. By a theorem of F. Karpelevic, [Kar], l is a parabolic subalgebra or a semi-
simple subalgebra. If l is parabolic the statement is obvious as any module induced
from a finite-dimensional l-module has finite l-multiplicities. Let l be semi-simple.
Then C(l) = 0, and thus l is primal by Corollary 4.5. But as l is maximal, any irre-
ducible infinite-dimensional (g, l)-module of finite type is strict, i.e. l is a Fernando-
Kac subalgebra of finite type. �

5. The case g = gl (n)

5.1. Description of reductive Fernando-Kac subalgebras of finite type.

Theorem 5.1. A reductive in g = gl (n) subalgebra k is a Fernando-Kac subalgebra
of finite type if and only if it is primal, or equivalently, if and only if C (k) = Z (k).

Proof. By Theorem 3.1 it suffices to prove that if C (k) = Z (k), then k is a Fernando-
Kac subalgebra of finite type. We will modify the argument in the proof of Theorem
4.4 under the assumption that g = gl (n).

Let h = h′ + h′′, p and m be as in the proof of Theorem 4.4. In particular
m = C(kss) ∩ p. We claim that h′′ can be chosen so that, in addition, there is a
decomposition p = a′⊂+ a and an isomorphism p : C(kss) → a. Here is how this claim
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implies the Theorem. Note that C(kss) is a direct sum of an abelian ideal and simple
ideals of type A. Choose now L to be a strict irreducible (C(kss), Z(k))-module of
finite type over Z(k). Define a p-module structure on L by putting a′·L = 0 and letting
a act on L via the isomorphism p. One can see immediately that L is an irreducible
(p, hk)-module of finite type over hk with p[L] = a′ + h. Apply the construction in
Theorem 4.3 to the triple (k, p, L) to obtain a (g, k)-module M of finite type over k.
As m ⊂ C(kss), we have mL = Z(k) and consequently g[M ] = k.

It remains to prove our claim about the choice of h′′. We will consider the parabolic
subalgebra p′ defined via (4.1) by the fixed element h′ and then we will choose h′′ so
that p is a certain subalgebra of p′. Let E be the defining (n-dimensional) g-module.
There is an isomorphism of kss ⊕ C (kss)-modules

(5.1) E ∼= ⊕i (Ei ⊗ Vi) ,

where the Ei’s are pairwise non-isomorphic irreducible kss-modules and the Vi’s are
irreducible C (kss)-modules. We have

(5.2) C (kss) ∼= ⊕i End (Vi) .

One can check that

(5.3) p′red = C (hkss)
∼= ⊕λ∈h∗

kss
End

(
Eλ

)
,

where Eλ denotes the hkss-weight space of weight λ. Furthermore, by (5.1),

(5.4) Eλ ∼= ⊕i

(
Eλ

i ⊗ Vi

)
.

Put Eλ
ij := Hom

(
Eλ

i , Eλ
j

)
⊗ Hom (Vi, Vj) and Eλ := ⊕i,jEλ

ij . Then combining (5.3)

and (5.4) one obtains that p′red
∼= ⊕λEλ. Note that Eλ

+ := ⊕i≤jEλ
ij is a parabolic

subalgebra of Eλ.
We now choose h′′ ∈ Z (k) so that the parabolic subalgebra p associated to h′ + h′′

by (4.1) is precisely (⊕λEλ
+)⊃+ np′ . Note that pred = ⊕i,λEλ

i,i. For each p ∩ kss-singular
weight λ of k in E there is a unique index iλ such that the p ∩ kss-highest weight of
Eiλ equals λ. Let a := ⊕λEλ

iλiλ
and a′ be the ideal complementary to a. Since Eλ

iλ

is one-dimensional and Eλ
iλiλ

∼= End(Viλ), equation (5.2) enables us to conclude that
C (kss) is isomorphic to a. �

Corollary 5.2. A reductive in g = gl(n) subalgebra k is a Fernando-Kac subalgebra
of finite type if and only if the defining g-module is multiplicity free as a k-module.

5.2. A combinatorial set-up. Let h be a Cartan subalgebra of g = gl(n) and let
l be a subalgebra of g which contains h. Then l is defined by its subset of roots ∆ (l) ⊂
∆, where ∆ ⊂ h∗ is the root system of g. Recall that ∆ = {εi − εj | 1 ≤ i 6= j ≤ n}
for an orthonormal basis ε1, . . . , εn of h∗. Set k := lred and n := nl. Then l = k⊃+ n.
Fix an arbitrary Borel subalgebra b ⊂ g containing h, and let Sk(g) ⊂ ∆ be the set
of weights of all k ∩ b-singular vectors in g. For any α ∈ Sk(g) denote by g (α) the
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irreducible k-submodule in g with highest weight α. Obviously any α, β ∈ ∆ satisfy
the condition

(5.5) α + β ∈ ∆ for α, β ∈ Sk(g) ⇒ α + β ∈ Sk(g).

More generally, let for any k-submodule f of g, Sk(f) denote the set of all weights of
k ∩ b-singular vectors in f. As k and n are subalgebras, Sk(n) and Sk(k) satisfy the
analog of condition (5.5).

The following lemma is an easy consequence of the description of root subalgebras
in gl(n) and we leave its proof to the reader.

Lemma 5.3. There exist pairwise non-intersecting subsets I, J, K ⊂ {1, . . . , n} such
that |I | = |J | and

Sk(g) = {εi − εj | i ∈ I ∪ K, j ∈ J ∪ K}.

Let Ck(f) denote the set of all linear combinations of vectors from Sk(f) with coef-
ficients in Z+.

Lemma 5.4. Let g = gl(n). If Ck(g/n) ∩ Ck(n) 6= {0}, one of the following relations
holds

(1) α1 + α2 = β1 + β2,
(2) α1 + α2 = β

for some α1, α2 ∈ Sk(g/l), β1, β2, β ∈ Sk(n), where (α1, α2) = (β1, β2) = 0 in the case
of 1.

Proof. If Ck(g/n) ∩ Ck(n) 6= {0}, there is a non-trivial relation

(5.6) α1 + ... + αk = β1 + ... + βl

for αi ∈ Sk(g/n) and βi ∈ Sk(n). Among all such relations we fix one with minimal k
and minimal l for given fixed minimal k. Consider first the case when α1 +αp ∈ Sk(g)
for some p ≤ k. We claim that then α1 + αp ∈ Sk(n). For, if α1 + αp ∈ Sk(g/n),
one can reduce k in (5.6) by the substitution β = α1 + αp, which contradicts our
assumption. Thus β := α1 + αp ∈ Sk(n), and to show that α1 + αp = β is a
relation of type 2 we need only verify that α1, αp 6∈ Sk(k). But the assumption
α1 ∈ Sk(k) (and similarly αp ∈ Sk(k)) is obviously contradictory, as then −α1 ∈ ∆(k)
and αp = α1 + αp − α1 = β − α1 ∈ ∆(n). Therefore α1, αp ∈ Sk(g/l), β ∈ Sk(n) and
α1 + αp = β.

In the remainder of the proof we assume that α1 + αp 6∈ Sk(g) for all p ≤ k. If
α1 = εi − εj, then εi and −εj appear in α1 + . . . + αk with positive coefficients.
Therefore, there exist a and b such that βa = εi − εr and βb = εs − εj , s 6= r by
minimality. By Lemma 5.3 γ := εs − εr ∈ Sk(g). We claim that γ ∈ Sk(g/n). Indeed,
assume to the contrary that γ ∈ Sk(n). Then one can modify (5.6) by removing α1

and replacing βa + βb by γ. Since (5.6) is minimal, the new relation must be trivial.
Thus α1 = β1 + . . . + βl. Since β1 + . . . + βl ∈ ∆, β := β1 + . . . + βl ∈ Sk(n),
and hence α = β ∈ Sk(n). Contradiction. Therefore indeed γ ∈ Sk(g/n), and we
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have a relation α1 + γ = βa + βb, where α1, γ ∈ S(g/n), βa, βb ∈ Sk(n). Obviously,
(α1, γ) = (βa, βb) = 0. To complete the proof we need to show that α1, γ ∈ Sk(g/l).
But the assumption α1 ∈ Sk(k) (and similarly γ ∈ Sk(k)) is contradictory as it implies
βb − α1 ∈ ∆(n). Hence γ = βa + (βb − α1) ∈ ∆(n). �

Corollary 5.5. Ck(g/n) ∩ Ck(n) = {0} if and only if Ck(g/l) ∩ Ck(n) = {0}.

Proof. As Ck(g/l) ⊂ Ck(g/n), Ck(g/n) ∩ Ck(n) = {0} implies Ck(g/l) ∩ Ck(n) = {0}. To
prove the converse assume that Ck(g/l)∩Ck(n) = {0} but Ck(g/n)∩Ck(n) 6= {0}. Then
by Lemma 5.4 one has a relation 1 or 2 with α1, α2 ∈ Sk(g/l). Hence Ck(g/l)∩Ck(n) 6=
{0}. Contradiction. �

Lemma 5.6. Let s = gl(n), q ⊂ s be a maximal parabolic subalgebra, and k := qred .
Let Vκ be the irreducible s-module with highest weight κ and Vµ(k) be the irreducible
k–module with highest weight µ. If λ is a dominant k–integral weight and β is the
highest root of s, then there exists a positive integer r such that the multiplicity of
Vλ+qβ(k) in Vλ+pβ is one for any p ≥ q ≥ r.

Proof. Set µ := λ+pβ, ν := λ+qβ. Note that µ and ν are automatically k -dominant
and hence Vν(k) is finite–dimensional. If Mµ is a Verma module over s and Mµ(k) is a
Verma module over k, then Mµ is isomorphic to Mµ(k)⊗S(q/k)∗ as a k-module. Thus
Mµ admits a filtration by k–submodules such that the associated graded k–module is
a direct sum of Verma modules over k, each appearing with finite multiplicity. As the
multiplicity of the weight (q − p)β in S(q/k)∗ is one, the multiplicity of Mν(k) in Mµ

is one. Therefore the multiplicity of Vν(k) in Mµ is also one. Now let N 6= Vµ be an
irreducible subquotient of Mµ. We have to show that the multiplicity of Vν(k) in N
is zero. It is known (see for example Theorem 7.6.23 [Dix]) that N is a subquotient
of Mrα(µ+ρ)−ρ for some positive root α such that (µ, α) ∈ Z+. Therefore it suffices
to prove that the multiplicity of Mν(k) in Mrα(µ+ρ)−ρ is zero. This is equivalent to
showing that rα(µ + ρ) − ρ − ν is not a weight of S(q/k), i.e. that rα(µ + ρ) − ρ − ν
does not belong to the convex hull C of ∆(q/k).

Choose r so that (ν, α) > 0 for any positive α satisfying (α, β) = 1. First consider
the case when (α, β) = 0. Here rα(µ + ρ)− ρ− ν = rα(ν + ρ)− ρ− ν +(p− q)β. But
rα(ν + ρ) − ρ − ν = aα for some negative a, which implies that rα(µ + ρ) − ρ − ν =
(p − q)β + aα does not belong to C . Next consider the case when (α, β) = 1. Here
rα(µ+ρ)−ρ−ν = rα(ν+ρ)−ρ−ν+(p−q)rα(β) = −(b+1+p−q)α+(p−q)β, where
b = (ν, α) is positive by our choice of r. One can see that −(b+1+p− q)α+(p− q)β
is not in C . Finally, the case α = β is obvious. �

Corollary 5.7. Let s = s1 ⊕ · · · ⊕ sm where each si is isomorphic to gl(ni), qi be
a maximal parabolic subalgebra of si and βi be the highest root of si. Let q =
q1 ⊕ · · · ⊕ ql ⊕ sl+1 ⊕ · · · ⊕ sm, k be the reductive part of q and β = β1 + · · · + βl for
some l ≤ m. If λ is a dominant k–integral weight, then there is a positive integer r
such that such that the multiplicity of Vλ+qβ(k) in Vλ+pβ is one for any p ≥ q ≥ r.
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5.3. Description of Fernando-Kac root subalgebras of finite type.

Theorem 5.8. A root subalgebra l = (k⊃+ n) ⊂ g = gl(n) is a Fernando-Kac subal-
gebra of finite type if and only if Ck(g/l) ∩ Ck(n) = {0}.

Proof. First, we will show that if Ck(g/l)∩ Ck(n) 6= {0}, then l is not a Fernando-Kac
subalgebra of finite type. If Ck(g/l) ∩ Ck(n) 6= 0, Lemma 5.4 provides us with a
relation 1 or 2. Assume that the relation be of type 2, i.e. α1 + α2 = β for some
α1, α2 ∈ Sk(g/l), β ∈ Sk(n). Let s be the subalgebra generated by k and g±β , and q

be the subalgebra generated by k and gβ. Then s is a reductive root subalgebra of g

and q is a maximal parabolic subalgebra of s. Therefore they satisfy the hypothesis
of Corollary 5.7 with l = 1. Moreover, g(β) commutes with gαi.

Let M be an irreducible strict (g, l)-module. There exists a b ∩ k-singular vector
v ∈ M such that g(β)v = 0. Let λ denote the weight of v. For any positive integer
t, set vt = (gα1)t(gα2)tv for 0 6= gαi ∈ gαi. As gαi acts freely on M , we have vt 6= 0.
Furthermore vt is b ∩ k-singular and g(β)vt = 0. Hence vt generates a s-submodule
Mt ⊂ M of highest weight λ + tβ. By Corollary 5.7 one can find r such that the
multiplicity of Vλ+rβ in Mt is not zero for any t > r. Therefore the multiplicity of
Vλ+rβ in M is infinite. Contradiction.

In the case of a relation of type 1, α1 + α2 = β1 + β2, let s ⊂ g be the subalgebra
generated by k, g±β1 and g±β2 , and q ⊂ s be the subalgebra generated by k, gβ1 and
gβ2 . The reader can check that s is a reductive root subalgebra of g, q is a parabolic
subalgebra of s satisfying the conditions of Corollary 5.7 with l = 2 and g(β1)⊕g(β2)
commutes with gαi. Therefore, an argument similar to that in the case of a relation
of type 2, leads to a contradiction.

It remains to prove that l is a Fernando-Kac subalgebra of finite type whenever
Ck(g/l) ∩ Ck(n) = {0}. Using Theorem 4.3 we will construct an irreducible strict
(g, l)-module M of finite type over l.

Note first that Ck(g) consist of k-dominant roots, and therefore Ck(g) ∩ −Ck(g) =
Ck(C(kss)) and Sk(g) ∩ −Sk(g) = Sk(C(kss)). Furthermore, as n is nilpotent, Ck(n) ∩
−Ck(n) = {0}. Let C0 = Ck(g/n) ∩ −Ck(g/n), and ∆0 = Sk(g/n) ∩ −Sk(g/n). The
above implies immediately that ∆0 ⊂ Sk(C(kss)) and ∆0 generates C0. By Corol-
lary 5.5, Ck(g/n)∩Ck(n) = {0}. Therefore one can find h ∈ h such that all eigenvalues
of adh : g → g are rational and

(5.7)
α(h) > 0 for α ∈ Sk(n),
α(h) = 0 for α ∈ ∆0,
α(h) < 0 for α ∈ Sk(g/(n + C(kss))).

One can easily verify that, in additon, h can be chosen so that

(5.8) α(h) < 0 for all α ∈ ∆(b ∩ kss).

Let p be defined by (4.1). Then ∆(pred) = ∆0, and n ⊂ np.
Let L be an irreducible (p, h)-module of finite type over h with trivial action of

np and such that pred[L] = h. Such L exists as pss is a sum of ideals of type A. Let
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M be as in Section 4.3. Then by Theorem 4.3, M is an irreducible (g, k)-module
of finite type over k. Let g [M ] = k⊃+ n′. We claim that n′ = n. Indeed g (α) ⊂ n′

if and only if g (α) ⊂ p [L]. In particular, α(h) ≥ 0. If α (h) > 0, then by (5.7)
and (5.8) g (α) ⊂ n ⊂ np ⊂ p [L]. If α (h) = 0, then α ∈ ∆0. As pred (L) = h, we have
g (α) 6⊂ p [L]. Thus n = n′. Theorem 5.8 is proven. �

Corollary 5.9. A root subalgebra l = (k⊃+ n) ⊂ gl(n) with n ⊂ C(kss) is a Fernando-
Kac subalgebra of finite type if and only if n is the nilradical of a parabolic subalgebra
in C(kss).

Proof. For the necessity see Theorem 3.1 (5). For the sufficiency we use Theorem 5.8.
By hypothesis n is the nilradical of a parabolic subalgebra in C(kss). We will show
that Ck(g/l) ∩ Ck(n) = {0}. Suppose not. Then there exist roots α1, ..., αk ∈ Ck(n/l)
and roots β1, ..., βl ∈ Ck(n) such that (5.6) holds. Restrict both sides of (5.6) to hkss

and write γ̃ for the restriction of a weight γ to hkss . Because n ⊂ C(kss), β̃i = 0 for
all i and hence α̃1 + ...+ α̃l = 0. But the α̃j ’s are dominant weights for kss. Therefore
α̃j = 0 for all j, and each αj ∈ Ck(C(kss)) = ∆(C(kss)). Equation (5.6) becomes a
nontrivial relation among roots in ∆(n) and ∆(C(kss)) \ ∆(n). Contradiction. �

Example. Let g = gl(4), h be the diagonal subalgebra, and l ⊂ g be a subalgebra
containing h. The rank of lss can be 0, 1 or 2. In the first case l is solvable, and,
by Proposition 3.2, l is of finite type if and only if nl is the nilradical of a parabolic
subalgebra. In the third case lred equals the fixed points of an involution θ : g → g

and l is always a Fernando subalgebra of finite type: the corresponding strict (g, l)-
modules are Harish-Chandra modules.

In the case when lss ∼= sl(2) we can fix the roots of lss to be ±(ε1 − ε2). To
determine l we need to specify the roots of nl . Up to automorphisms of g that
stabilize lss there are eight choices for nl (including the possibility nl = 0). A direct
checking based on Theorem 5.8 and Corollary 5.9 shows that there is a single choice
of nl for which l is not a Fernando-Kac subalgebra of finite type. We may normalize
this l so that the roots in nl are ε1 − ε3 and ε2 − ε3. Furthermore, the so defined
l = lred⊃+ nl satisfies conditions 1–5 in Theorem 3.1. This shows in particular that the
conditions in Theorem 3.1 are not sufficient for a subalgebra l to be a Fernando-Kac
subalgebra of finite type.
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