
ON REPRESENTATIONS OF THE AFFINE SUPERALGEBRA q(n)(2)
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Abstract. In this paper we study highest weight representations of the affine Lie su-
peralgebra q(n)(2). We prove that any Verma module over this algebra is reducible and
calculate the character of an irreducible q(n)(2)- module with a generic highest weight.
This formula is analogous to the Kac-Kazhdan formula for generic irreducible modules
over affine Lie algebras at the critical level.

1. Introduction

1.1. Due to the existence of the Casimir operator a Verma module over a Kac-Moody
superalgebra with a symmetrizable Cartan matrix is irreducible if its highest weight is
generic.

In this paper we study the structure of Verma modules over the twisted affine superal-
gebra q(n)(2), n ≥ 3. This superalgebra has a non-symmetrizable Cartan matrix. We will
see that any Verma module over it is reducible.

We prove that a simple highest weight q(n)(2)-module with a “generic” highest weight
λ has the following character formula:

(1) chL(λ) = eλ
∏

α∈∆̂+

re,0

(1 − e−α)−1
∏

α∈∆̂+

1

(1 + e−α).

Here genericity means that λ lie in the compliment to countably many hypersurfaces in
ĥ∗. This formula is analogous to the Kac-Kazhdan character formula, see below.

1.1.1. Let ĝ be a complex affine Lie algebra. A Verma module with a generic weight at
non-critical level is irreducible. A Verma module at the critical level is always reducible;
if λ is a generic weight at the critical level then the simple module L(λ) has the following
character: chL(λ) = eλ

∏

α∈∆̂+
re

(1 − e−α)−1. This formula was conjectured by V. G. Kac
and D. A. Kazhdan in [KK] and proven by [Ku],[FF],[Sz]. Moreover, as it is shown
in [Ku], there is a bijection between submodules of a Verma module with a “generic”
highest weight at the critical level and graded ideals of a polynomial algebra in countable
number of variables, in fact, the Jantzen filtration of a Verma module corresponds to the
adic filtration of a polynomial algebra.

It turns out that the adic filtration comes to the picture as follows. Let H (resp., H−)
be the sum of positive (resp., negative) imaginary root spaces of ĝ. Then H−⊕CK⊕H is
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a countably dimensional Heisenberg algebra. A vacuum module of the Heisenberg algebra
is irreducible if the central charge is non-zero. Let V 0 be the vacuum module with zero
central charge. Identify V 0 with the universal enveloping algebra U(H−), which is a
polynomial algebra in a countable number of variables. Recall that ĝ is Z-graded (by the
eigenvalues of D) and view V 0 as a graded module via this idenitification. H− inherits
the Z-grading. It is easy to see that the Jantzen filtration on V 0 corresponds to the adic
filtration on U(H−). In this interpretation a Verma module M(λ) with a generic highest
weight at the critical level looks like V 0: there exists an isomorphism HC+ from the
space of singular vectors M(λ)n̂ to V 0 which induces a bijection between the submodules
of M(λ) and the homogeneous submodules of V 0; moreover, this bijection is compatible
with the Jantzen filtrations.

A similar fact holds for affine Lie superalgebras with symmetrizable Cartan matrices if
H− ⊕ CK ⊕H+ is a Heisenberg algebra (i.e., except the case A(2k, 2l)(4)), see [G].

1.1.2. Let us go back to q(n)(2) for n ≥ 3. In this case the subalgebra H̃ generated by
imaginary root spaces is not isomorphic to a Heisenberg algebra. It turns out that the
even part of H̃ is a centre. As a result, a Verma module over H̃ is always reducible.
We show that a Verma q(n)(2)-module M(λ) with a generic highest weight λ looks like
a Verma H̃-module M(λ): there exists an epimorphism HC+ : M(λ)n̂ → M(λ) which
extends to a bijection between the submodules of M(λ) and the homogeneous submodules
of M(λ). This implies the character formula (1).

It is possible to show (as it is done in [G]) that for a generic λ the Jantzen filtration
on M(λ) looks as follows: M(λ)0 = M(λ), M(λ)k = M ′(λ) for any k > 0, where M ′(λ)
is the maximal proper submodule of M(λ). The structure of the Jantzen filtration on
M(λ) is similar, and therefore the bijection between submodules in M(λ) and in M(λ)
is compatible with the Jantzen filtrations.

1.1.3. Recall that for affine Lie superalgebras with symmetrizable Cartan matrices all
Shapovalov determinants are non-zero polynomials which admit a linear factorization
(i.e. all their irreducible factors are linear).

For q(n)(2) this does not hold. The fact that any Verma module is not simple means
that there exists a Shapovalov determinant detSν which is identically equal to zero. Let δ
be a minimal imaginary root. It turns out that detSν = 0 iff ν ≥ 2δ. Another interesting
feature of q(n)(2) is that detSδ has an irreducible factor of degree n − 1: this follows
from the fact that the leading term of detSδ is divisible by the irreducible polynomial
h1 . . . hn(

1
h1

+ . . . 1
hn

) which has degree n − 1.

1.2. Main result. Let ĝ = q (n)(2), i.e.

ĝ = sl (n) ⊗ C
[

t±2
]

⊕ sl (n) ⊗ tC
[

t±2
]

⊕ CK ⊕ CD.
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Fix triangular decompositions sl(n) = n− ⊕ h ⊕ n and ĝ = n̂− ⊕ ĥ ⊕ n̂, where

n̂− = n− ⊕ sl(n) ⊗ t−1C[t−1], ĥ = h ⊕ CK ⊕ CD, n̂ = n ⊕ sl(n) ⊗ tC[t].

1.2.1. Set

Ñ+ :=
∑

r∈Z

tr ⊗ n, Ñ− :=
∑

r∈Z

tr ⊗ n−, H̃ :=
∑

r∈Z

tr ⊗ h ⊕ CK.

Notice that [ĝ, ĝ] = Ñ+ ⊕ H̃ ⊕ Ñ− is a triangular decomposition. Let HC+ : U([ĝ, ĝ]) →
U(H̃) be the projection along the kernel U([ĝ, ĝ])Ñ− + Ñ+U([ĝ, ĝ]). Set

H− := H̃ ∩ n̂− =
∑

r<0

tr ⊗ h, S := U(H−,0).

Notice that H−,0 =
∑

r<0 t
2r ⊗ h coincides with the centre of H−; in particular, S is a

polynomial algebra in countably many variables.

Define HC+ : M(λ) → U(H−) via the natural identification of M(λ) with U(n̂−).

We call v ∈M(λ) singular if v is a weight vector and v ∈M(λ)n̂.

1.2.2. Theorem. Let λ be a generic weight.

(i) The restriction of HC+ to M(λ)n̂ provides a bijection HC+ : M(λ)n̂ → S.
(ii) One has [M(λ) : L(λ−ν)] = dimM(λ)n̂

λ−ν so any submodule of M(λ) is generated
by singular vectors.

(iii) A submodule generated by a singular vector is isomorphic to a Verma module
M(λ− sδ) for some s ≥ 0.

1.2.3. Remark. Theorem 1.2.2 holds for a generic weight at any level k ∈ C, see Re-
mark 7.3.

In Theorem 1.2.2 we may replace the projection HC+ by the projection HC− : U([ĝ, ĝ]) →
U(H̃) along the kernel U([ĝ, ĝ])Ñ+ + Ñ−U([ĝ, ĝ]).

1.2.4. Character formula (1). The algebra S inherits the grading from U(ĝ); if I ⊂ S is
homogeneous, we denote by ch I its character with respect to this grading.

For a submodule N of M(λ) set

H(N) := HC+(N n̂) ⊂ S.

From Theorem 1.2.2 we see that H provides a one-to-one correspondence between the
submodules of M(λ) and the homogeneous ideals of S.

The characters of N and of H(N) are connected by the following formula:

(2) chN = chL(λ) · ch(H(N)).
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Applying this formula to N = M(λ) we get

chM(λ) = chL(λ) · chS

which is equivalent to the character formula (1).

1.3. Outline of the proof of Theorem 1.2.2. Set q := n +
∑

r>0 t
r ⊗ (h + n). Using

the Shapovalov form we prove that for generic λ any singular vector of M(λ) has weight
λ− α for some imaginary root α. Then it is easy to show that v ∈ M(λ)λ−α is singular
if qv = 0.

Let m be an even positive number and h be an element of h. Set

N := Ch+
∑

s≥0

Ñ+
s , V := Ch+

∑

0≤s<m

Ñ+
s ,

and observe that N is a q-submodule of ĝ and V is an n+-submodule of N . Let h∗ ∈ V ∗

be the weight element dual to h. A cohomological lemma 8.1 implies that for generic λ
there exists a unique q-homomorphism ψ : V ∗ → M(λ) such that ψ(h∗) is the highest
vector vλ, see Lemma 6.3.3.

Let Tm : Ñ+ + h → Ñ+ + h be the linear map given by Tm(a ⊗ ts) = a ⊗ ts−m. Let
γ : ĝ⊗M(λ) → M(λ) be the natural map γ(u⊗v) = uv, and let id′ ∈ V ⊗N∗ corresponds
to the identity map V → V . In Proposition 6.3.5, we prove that the vector

v(h,m) = γ
(

(Tm ⊗ ψ) id′
)

satisfies HC+(v(h,m)) = h(−m) and is singular. As it was mentioned above, the singu-
larity follows from qv(h,m) = 0 which is a consequence of the q-invariance of ψ.

1.4. Index of notations. Symbols used frequently are given below under the section
number where they are first defined.

1.2.1 Ñ±, H̃,H,S,HC+

1.3 q, N, V, Tm

2.2 ∆̂+, Q̂+, δ
6.1 Λ
2.5.4 σ
6.2 B

2. Preliminaries and notation

Our base field is C. For a homogeneous element of a superspace we denote by p(u) its
Z2-degree. For a Lie superalgebra g we denote by U(g) its universal enveloping algebra
and by S(g) its symmetric algebra.
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2.1. Description of q(n)(2). The Lie superalgebra q(n)(2) can be constructed as follows.
Recall that sq(n) ⊂ gl(n|n) consists of the matrices with the block form

XA,B :=





A | B
−− − −−
B | A





where A is an arbitrary n× n matrix, B is a traceless n × n matrix.

Let L(sq(n)) = sq(n)⊗C[t±1] be the corresponding loop superalgebra. Then q(n)(1) =
L(sq(n))⊕CD, where D acts on L(sq(n)) by [D, x⊗tk] = kx⊗tk. Note that sq(n), q(n)(1)

are not Kac-Moody superalgebra since their Cartan subalgebras contain odd elements.

Let ε be an automorphism of sq(n) which acts by id on sq(n)0 = gl(n) and by − id
on sq(n)1. Extend ε to q(n)(1) by ε(t) = −t, ε(D) = D. One can define q(n)(2) as the
quotient of the subalgebra

(q(n)(1))ε =
(

L(sq(n))
)ε

⊕ CD

by the abelian ideal
∑

i6=0 C ⊗ t2i. It is a Kac-Moody superalgebra, see for example [HS].

Its Cartan matrix is not symmetrizable. The algebras sq(n), q(n)(1), q(n)(2) do not have
even non-degenerate invariant bilinear forms, but have the odd ones.

2.1.1. Using the above definition one can identify q(n)(2) with the vector space

sl(n) ⊗ C[t, t−1] ⊕ CK ⊕ CD

and define the commuatator as

[x⊗ tk, y ⊗ tm] = (xy − yx)⊗ tk+m

if km is even,

[x⊗ tk, y ⊗ tm] = (xy + yx− 2 tr(xy)) ⊗ tk+m + 2tr(xy)δ−k,mK

if km is odd.

Notice that the central elementK does not lie in [q(n)
(2)

0
, q(n)(2)], but lies in [q(n)

(2)

1
, q(n)

(2)

1
].

Let h denote the diagonal subalgebra in sl(n). The Cartan subalgebra of ĝ is

ĥ = h ⊗ 1 ⊕ CK ⊕ CD.

It is convenient to identify h⊗1⊕CK with the diagonal subalgebra of gl(n), by h1, ..., hn

we denote the standard basis there.

The superalgebra H̃ generated by the imaginary root spaces has the following structure:

H̃0 =
∑

r∈Z

h ⊗ t2r ⊕ CK, H̃1 =
∑

r∈Z

h ⊗ t2r+1.

The centre of H̃ coincides with H̃0; the other relations are

[x⊗ t2r+1, y ⊗ t2s+1] = (xy + yx− 2 tr(xy))⊗ t2(r+s+1) + 2 tr(xy)δ2r+1,−2s−1K.
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2.2. We denote by ∆̂+ the set of positive roots of ĝ. Set

Q̂+ :=
∑

α∈∆̂+

Z≥0α.

Define a partial ordering on ĥ∗ by setting µ > µ′ if µ− µ′ ∈ Q̂+.

Denote by δ the minimal imaginary root.

2.2.1. For α ∈ ∆̂+ let Dα be a matrix of the pairing ĝα × ĝ−α → h.

Note that Dα = (hα) if α is real, and that Dmδ is an (n− 1)× (n− 1) matrix. By 2.1.1,
D2mδ is the zero matrix and D(2m+1)δ = Dδ for m > 0. A straightforward calculation
shows that up to a multiplication on a non-zero scalar, one has

detDδ = h1 . . . hn(
1

h1
+ . . .+

1

hn

).

2.3. Set b̂ := ĥ + n̂. For each λ ∈ ĥ∗ let M(λ) be the Verma module of the highest
weight λ, let vλ be the canonical generator of M(λ) and let M ′(λ) be the maximal proper
submodule of M(λ). The module L(λ) := M(λ)/M ′(λ) is simple.

2.3.1. Verma modules do not admit Jordan-Hölder series, since some Verma modules have
an infinite length. However, so-called local series introduced in [DGK] are nice substitution
for Jordan-Hölder ones. A series of weight modules N = N0 ⊃ N1 ⊃ . . . ⊃ Nm = 0 is
called local at ν ∈ ĥ∗ if either Ni/Ni+1

∼= L(λi) for some λi ≥ ν or (Ni/Ni+1)µ = 0 for
all µ ≥ ν. This allows to define the multiplicity [N : L(λ)] as the number of i such that
Ni/Ni+1

∼= L(λ) for a series local at some ν ≤ λ.

2.4. Projections HC and HC+. Denote by HC the Harish-Chandra projection HC :

U(ĝ) → U(ĥ) = S(ĥ) along the decomposition U(ĝ) = U(ĥ) ⊕ (U(ĝ)n̂+ + n̂−U(ĝ)). Recall
that HC+ : U([ĝ, ĝ]) → U(H) is the projection along the kernel U([ĝ, ĝ])N−+N+U([ĝ, ĝ]).

The restriction of HC to U(ĝ)ĥ is an algebra homomorphism. Similarly the restriction
of HC+ to U([ĝ, ĝ])h is an algebra homomorphism.

2.5. Characters. We say that a module M admits a character if M is a diagonalizable
h-module and all its weight spaces are finite dimensional; we write

chM =
∑

µ

dimMµe
µ.

2.5.1. For each λ let Cλ be the collection of elements of the form
∑

µ<λ cµe
µ where

cλ ∈ Z≥0. Set C := {
∑k

i=1 xi| xi ∈ Cλi
}. Note that x, y ∈ C implies xy ∈ C . For x, y ∈ C

write x ≥ y if x− y ∈ C . In all our examples, chM belongs to C .



ON REPRESENTATIONS OF THE AFFINE SUPERALGEBRA q(n)(2) 7

2.5.2. For a diagonalizable h-module M we denote by Ω(M) the set of weights of M and
by Mµ the weight space of weight µ.

2.5.3. Recall that ĝ = [ĝ, ĝ]⊕CD. ThereforeM(λ) andM(λ−rδ) are isomorphic as [ĝ, ĝ]-
modules, and hence M ′(λ) ∼= M ′(λ− rδ). As a consequence, chL(λ− rδ) = e−rδ chL(λ).

2.5.4. Choice of antiautomorphism. Call a linear endomorphism σ of a superalgebra a
“naive” antiautomorphism if σ is invertible and σ([xy]) = [σ(y), σ(x)]. Every Kac-Moody
Lie superalgebra has a naive involutive antiautomorphism σ such that σ|ĥ = id, and

σ(n̂) = n̂−. Define a naive anti-involution of ĝ by

D 7→ D, tr ⊗ a 7→ t−r ⊗ a′

where a′ is the transpose of a matrix a ∈ gl(n).

If M is a ĝ-module with finite-dimensional weight spaces, then the restricted dual
space M∗ of M has the structure of ĝ-module defined by Xf(m) = f(σ(X)m) for any
f ∈ M∗, m ∈ M,X ∈ ĝ. The corresponding module will be denoted by Mσ. It is
easy to see that σ is a contravariant functor on the category of weight modules with
well defined characters, chM = chMσ and therefore L(λ)σ ∼= L(λ). It is also clear that
[M : L(λ)] = [Mσ : L(λ)].

3. The Lie superalgebra H̃

In this section we study Verma modules over H̃.

3.1. Write H̃ = H− ⊕CK⊕ h⊕H, where H = H̃ ∩ n̂ =
∑

r>0 h⊗ tr. For λ ∈ ĥ let M(λ)

be a Verma H̃-module

M(λ) = U(H̃) ⊗U(h+H) Cvλ, Hvλ = 0, hvλ = λ(h)vλ for any h ∈ h.

3.1.1. Note that ĥ acts on H̃; define the characters of H̃-modules via this action. Then

chM(λ) = eλ
∏

α∈∆im,0

(1 − e−α)−1
∏

α∈∆im,1

(1 + e−α).

The subalgebra S = U(H−,0) lies in the centre of U(H̃) and acts freely on M(λ). Every
ideal J of S defines the submodule JM(λ) in M(λ). On the other hand, any submodule
N ⊂ M(λ) defines the ideal JN ⊂ S such that N ∩ S = JNvλ.

Proposition. Asume that detDδ is not zero when evaluated at λ. Then the map
N 7→ JN defines a bijection between submodules in M(λ) and ideals in S.
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Proof. It suffices to check that N = JNM(λ) and it is clear that JNM(λ) ⊂ N . Let
V = M(λ)/JNM(λ) and W be the image of N in V under the natural projection. We
have to show that W = 0. Set R = S/JN . It is easy to see that V is a free R-module and
that W ∩Rvλ = 0.

Let u1, ..., un−1 be a basis in h, Xi,j = ui ⊗ t−2j−1, Yi,j = ui ⊗ t2j+1. Recall that
[Xi,j, Yk,j ] = [Xi,0, Yk,0]. Due to the assumption on λ one can choose u1, ..., un−1 so that

λ([Xi,j , Yk,j]) = δi,k. Clearly Xi,j for i = 1, ..., n−1, j ≥ 0 form a basis in H̃−,1. Introduce
the order on Xi,j by setting Xi,j ≥ Xk,l if j ≥ l or j = l and i ≥ k. Then Xi1,j1...Xik,jk

vλ

for all Xi1,j1 ≥ ... ≥ Xik,jk
form a basis of V over R. Now assume that W 6= 0. Since

W ∩Rvλ = 0, one can pick up a non-zero v ∈W such that the maximal Xi,j which appears
in the decomposition of v is minimal among all non-zero vectors in W . One can write in
the unique way v = Xi,jw+ u for some non-zero w and u such that in the decomposition
of u, w only Xk,l < Xi,j appear. Then Yi,ju = Yi,jw = 0 and Yi,jv = w. Then w ∈ W ,
w 6= 0 and all Xk,l in the decomposition of w are less than Xi,j Contradiction. �

3.2. Now consider M(λ) as a module over CD + H̃. Then M has a unique maximal
submodule M′(λ) and a unique simple quotient L(λ) = M(λ)/M′(λ). Moreover, there
is a bijection between submodules of M(λ) and graded ideals of S, where the grading on
S is defined by D. The above proposition implies the following

Corollary. For a generic weight λ ∈ h∗ one has

(i) M(λ)H = Svλ;
(ii) [M(λ) : L(λ− sδ)] = M(λ)Hλ−sδ for all s;
(iii) any submodule N of M(λ) is generated by M(λ)H;
(iv) chL(λ) = eλ

∏

α∈∆im,1
(1 + e−α).

4. On the reducibility of a Verma module over a Kac-Moody
superalgebra

Let ĝ = n̂− + ĥ + n̂+ be an arbitrary Kac-Moody superalgebra. For each positive root
α denote by Dα the pairing ĝα × ĝ−α → ĥ. Let ∆′ ⊂ ∆+ consists of the roots where Dα

is degenerate (i.e., [e, ĝ−α] = 0 for some non-zero e ∈ ĝα). Set

Q′ :=
∑

α∈∆′

Z≥0α.

4.1. Theorem. If µ 6∈ Q′ then the weight space M(λ)λ−ν does not contain a singular

vector for a generic λ ∈ ĥ∗.

Remark. “Genericity” here means that the property holds on the compliment to a
hypersurface.
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Proof. Assume that M(λ)n̂+

λ−µ 6= 0 for all λ ∈ h∗. This means that a certain system of
homogeneous linear equations with coefficients in S(h) has a non-zero solution for each
λ ∈ h∗. Then we can write a “generic” solution: a non-zero element u ∈ U(n̂−)−µS(h) such
that for any λ ∈ h∗ the vector u(λ)vλ ∈ M(λ)λ−µ is singular. Note that (ad n̂+)U(n̂−) ⊂
U(n̂−)S(h) and define the action of n̂+ on U(n̂−)S(h) by

e.(xs) := (ad e)(x)s for e ∈ n̂+, x ∈ U(n̂−), s ∈ S(h).

Then u(λ)vλ ∈M(λ)n̂+

λ−µ means that

n̂+.u = 0.

Let F be the canonical increasing filtration on U(h) = S(h) (by the total degree);
extend F to U(n̂−)S(h) by setting F r(U(n̂−)S(h)) = U(n̂−)F r(S(h)). Note that

n̂+.F p(U(n̂−)S(h)) ⊂ F p+1(U(n̂−)S(h))

and for a fixed e ∈ n̂+ denote by τ ′e : U(n̂−)S(h) → grF U(n̂−)S(h) the map

x 7→ grdegF (x)+1(e.x)

where degF (x) stands for the degree of x with respect to the filtration F . Now let F− be
the canonical filtration on U(n̂−); extend F− to grF U(n̂−)S(h) ∼= U(n̂−)S(h) by setting

F k
−(U(n̂−)S(h)) = F k

−(U(n̂−))S(h). Clearly, gr−(U(n̂−)S(h)) = S(b̂−) where b̂− := h+ n̂−.

Consider the map τe := gr− ◦τ ′e which is the map U(n̂−)S(h) → S(b̂−) given by

τe(x) = gr− grdegF (x)+1(e.x).

Define the action of n̂+ on b̂− by

e ∗ y = [e, y]δβ,γ if e ∈ n̂+
β , y ∈ ĝ−γ

and extend this action to a derivation of S(b̂−). One can easily check that

τe(x) = e ∗ gr− gr x.

Set

∆′′ : = {β ∈ ∆+|β ≤ µ & β 6∈ ∆′},
V1 : =

∑

β∈∆′′ n̂
−
−β ,

V2 : =
∑

β∈∆′′ n̂
+
β ,

W : = h +
∑

β∈∆′ n̂
−
−β .

Note that dimV1 = dimV2 <∞. Define a map D : V2 ⊗S(V1 ⊕W ) → S(V1 ⊕W ) by

D(e, z) := e ∗ z.

Note that gr− gru lies in S(V1 ⊕W ). The equality n̂+.u = 0 forces τ ′e(u) = 0 and thus
τe(u) = 0 for any e ∈ n̂+. Hence

D(e, gr− gr u) = e ∗ gr− gru = 0 for any e ∈ n̂+.
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By the construction, the map z 7→ D(e, z) is a derivation for each e ∈ V2. Observe that
D(V2 ⊗ V1) ⊂ h ⊂ W . By the definition of ∆′′ one has

{v ∈ V1| ∀f ∈ V2 D(f, v) = 0} = 0.

Using Lemma 4.2 we obtain gr− gru ∈ S(W ). However, Ω(S(W )) = −Q′ so S(W )µ = 0.
Hence u = 0. �

4.2. Lemma. Let V1, V2 be finite dimensional vector spaces of the same dimension
and let W be an even vector space. Let d : V2 ⊗ V1 → W be a non-degenerate pairing i.e.
d(V2, v) 6= 0 for a non-zero v ∈ V1. Define D : V2 ⊗ S(V1 ⊕ W ) → S(V1 ⊕W ) by the
following properties

(i) D(f, v) = d(f, v) for v ∈ V1 and D(f, w) = 0 for w ∈W .
(ii) For each f ∈ V ∗ the map x 7→ D(f, x) is a derivation of the algebra S(V1 ⊕W ).

Then

{x ∈ S(V1 ⊕W )| ∀f ∈ V2 D(f, x) = 0} = S(W ).

Proof. Let F be the field of fractions of S(W ) and let A be the localization of S(V1 ⊕W )
by the non-zero elements of W that is

A := S(V1 ⊕W ) ⊗S(W ) F.

Extend D to a map F ⊗ V2 ⊗ A → A by setting D(s, f, xw−1) := sD(f, x)w−1 for
s ∈ F, x ∈ S(V1 ⊕W ), w ∈ S(W ). Then for each pair (s, f) the map a 7→ D(s, f, a) is a
derivation of the algebra A. Identify F ⊗ V1 with the F -subspace FV1 ⊂ A spanned by
V1. Extend d to a map F ⊗V2 ⊗FV1 → F by setting d(s, f, s′v) := ss′d(f, v) for s, s′ ∈ F .
We have

D(s, f, v) = d(s, f, v) for v ∈ FV1.

View F ⊗ V2, FV1 as vector spaces over F and note that d is a bilinear map. Choose
F -bases {fi} in F ⊗V2 and {vj} in FV1 satisfying d(fi, vj) = δij. View a ∈ A as a rational
function in {vj} and a basis of W ; note that the denominator is a polynomial in S(W ).
We have

D(fi, a) =
∂a

∂vi

.

Therefore,

{a ∈ A| ∀i D(fi, a) = 0} = F.

Clearly,

{x ∈ S(V ⊕W )| ∀f ∈ V2 D(f, x) = 0} = S(V ⊕W ) ∩ {a ∈ A| ∀i D(fi, a) = 0}

and this gives the assertion. �
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4.3. Proposition. If [M(λ) : L(λ′)] > 0 then either M(λ) has a singular vector of
weight λ′ or [M(λ) : L(λ′′)], [M(λ′′) : L(λ′)] > 0 for some λ′′ such that λ′ < λ′′ < λ.

Proof. Let us assume that M(λ) has no singular vectors of weight λ′. Then λ 6= λ′, hence
one can find a proper submodule N ⊂ M(λ) such that [N : L(λ′)] > 0. By our assumption
N n̂

λ′ = 0. By duality Nσ
λ′ ⊂ n̂−Nσ.

Define the increasing flag F0 ⊂ F1 ⊂ F2 ⊂ ... of ĝ-submodules of Nσ such that F0 = 0
and Fi/Fi−1 is generated by all singular vectors in Nσ/Fi−1 of weights greater than λ′.
Since eventually all weights µ ≥ λ′ of singular vectors will be exausted, Nσ

λ′ ⊂ n̂−Nσ

implies that (Fi)λ′ = Nσ
λ′. Therefore [Fi : L(λ′)] > 0 for some i > 0. Choose the minimal

i such that [Fi : L(λ′)] > 0. Then [(Fi/Fi−1) : L(λ′)] > 0. By definition Fi/Fi−1 is
a quotient of a direct sum of Verma modules. Hence [M(λ′′) : L(λ′)] > 0 at least for
one of these Verma modules M(λ). On the other hand, [Nσ : L(λ′′)] > 0, hence by
duality [N : L(λ′′)] > 0. Thus, we have [M(λ′′) : L(λ′)] > 0 and [M(λ) : L(λ′′)] > 0 as
required. �

4.3.1. Corollary. If ĝ is a Lie algebra then

[M(λ) : L(λ′)] > 0 =⇒ M(λ)n̂
λ′ 6= 0.

Proof. If ĝ is a Lie algebra then M(ν)n̂
ν′ 6= 0 implies that M(ν ′) is a submodule of M(ν);

the assertion follows from Proposition 4.3 by induction on λ− λ′. �

4.4. We will use the following lemma.

Lemma. Assume that λ is such that [M(λ) : L(µ)] = M(λ)n̂
µ for all µ ∈ ĥ∗. Then

any submodule M of M(λ) is generated by its singular vectors.

Proof. Let Y be the set of subquotients of M(λ) and Y ′ := {M ∈ Y| ∀µ [M : L(µ)] =
dimM n̂

µ}. Let us show that Y ′ = Y and that for any M,N ∈ Y such that N is a submodule
of M one has

(3) dimM n̂
µ = dimN n̂

µ + dim(M/N)n̂
µ.

Take M ∈ Y ′ and let N be a submodule of M . One has

[M : L(µ)] = [N : L(µ)] + [M/N : L(µ)] ≥ dimN n̂
µ + dim(M/N)n̂

µ ≥ dimM n̂
µ .

This gives N, M/N ∈ Y ′ and implies (3). Since M(λ) ∈ Y ′ we obtain Y ′ = Y.

Now let M be any submodule of M(λ) and let N be the submodule generated by M n̂.
By (3), dim(M/N)n̂

µ = 0 for any µ. Hence M/N = 0 as required. �
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5. Towards the proof of Theorem 1.2.2 (i), (ii)

5.1. In this section we reduce Theorem 1.2.2 (i), (ii) to the following assertions:

(A) chL(λ) ≥ eλ
∏

α∈∆̂+
re;0

(1 − e−α)−1
∏

α∈∆̂+
1
(1 + e−α).

(B) HC+(M(λ)n̂) contains H−,0.

5.2. Algebra structure on
∑

sM(λ)n̂
sδ. Identify End[ĝ,ĝ](M(λ)) with

∑

sM(λ)n̂
sδ via

the map φ 7→ φ(vλ). Endow
∑

sM(λ)n̂
sδ with the algebra structure via this bijection.

5.2.1. Lemma. The restriction HC+ :
∑

sM(λ)n̂
sδ → U(H−) is an algebra homomor-

phism.

Proof. Let ι stands for the natural identification M(λ) with U(n̂−). Clearly, the algebra
structure on

∑

sM(λ)n̂
sδ is compatible with ι i.e., ι(x)ι(y) = ι(xy).

Notice that ι maps
∑

sM(λ)sδ to U(n̂−)h′, where h′ = ĥ ∩ [ĝ, ĝ]. Now the assertion

follows from the fact that the restriction of HC+ to U(n̂−)h′ is an algebra homomorphism.
�

5.3. Proof of Theorem 1.2.2 (i),(ii). From Lemma 4.4 we see that the formula

(4) [M(λ) : L(λ− ν)] = dimM(λ)n̂
λ−ν

implies that any submodule of M(λ) is generated by singular vectors.

Let us prove (4). From Lemma 5.2.1 and the assertion (B) it follows that HC+(M(λ)n̂)
contains S. Then

(5) [M(λ) : L(λ− ν)] ≥ dimM(λ)n̂
λ−ν ≥ dimS−ν .

Using 2.5.3, we get

(6) chM(λ) ≥
∑

s

[M(λ) : L(λ− sδ)]e−sδ chL(λ) ≥ chS · chL(λ),

where the first inequality is strict if [M(λ) : L(λ−ν)] 6= 0 for some ν 6∈ Zδ and the second
inequality is strict if at least one of the inequalities of (5) is strict. The inequality (A)
can be rewritten as

(7) chS · chL(λ) ≥ chM(λ).

Comparing (6) with (7) we conclude that all inequalities in (6) are in fact equalities and
thus all inequalities in (5) and the inequality (A) are equalities as well. In particular, this
gives (4).

Since the inequalities (5) are equalities we have chM(λ)n̂ = eλS. By above, HC+(M(λ)n̂)
contains S. As a result, the restriction of HC+ to M(λ)n̂ gives a bijection: HC+ :
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M(λ)n̂ ∼
−→ S; note that this is an algebra isomorphism. This proves Theorem 1.2.2

(i).

6. Explicit construction of singular vectors

In this section we prove (B) of 5.1 for λ ∈ Λ, where Λ is described in 6.1. More
precisely, for λ ∈ Λ in Proposition 6.3.5 we will explicitly construct a singular vector
v(h,m) ∈M(λ) satisfying HC+(v(h,m)) = t−m ⊗ h where h is any element of h and m is
any even positive number.

Note that Λ is dense in ĥ∗ so (B) holds for any λ ∈ ĥ.

6.1. The set Λ. Let Λ be the set of λs such that any singular vector of M(λ) has weight
of the form λ− 2sδ for some s ≥ 0:

Λ :=
⋂

µ∈Q̂+,µ6=2sδ

Λµ, where Λµ := {λ ∈ h∗| M(λ)n̂+

λ−µ = 0}.

Recall that M(λ) ∼= M(λ − 2δ) as [ĝ, ĝ]-modules. As a consequence, Λ is invariant
under the shift by 2δ: if λ ∈ Λ then λ− 2δ ∈ Λ.

6.1.1. Lemma. For any λ ∈ Λ all simple subquotients of M(λ) are of the form
L(λ− 2sδ).

Proof. Let ν ∈ Q+ \ N(2δ) be minimal such that [M(λ) : L(λ− ν)] 6= 0 for some λ ∈ Λ.
By Proposition 4.3 there exists ξ such that 0 < ξ < ν and [M(λ) : L(λ− ξ)], [M(λ− ξ) :
L(λ−ν)] 6= 0. Then ξ ∈ N(2δ) so λ−ξ ∈ Λ. The minimality of ν gives (λ−ξ)− (λ−ν) ∈
N(2δ) so ν ∈ N(2δ). The assertion follows. �

6.1.2. Lemma. The set Λ is Zariski dense in ĥ∗.

Proof. Retain notation of Sect. 4. By 2.2.1, ∆′ = {2sδ}s>0 and so Q′ = {2sδ}s>0. By The-

orem 4.1, Λµ is the compliment to a surface in ĥ∗ for µ 6= 2sδ. As a consequence, Λ is

the compliment to a union of countably many hypersurfaces in ĥ∗. This implies the
assertion. �

6.2. The subalgebra q. Put B := Ñ+ ⊕H; Recall that q = B ∩ n̂.
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6.2.1. Lemma. Take λ ∈ Λ. A vector v ∈M(λ)λ−2sδ is singular iff qv = 0.

Proof. Take v ∈ M(λ)λ−sδ satisfying qv = 0. The subspace U(n̂)v contains a singular
vector. Write n̂ = q ⊕ s where s :=

∑

i>0 n− ⊗ ti. Notice that s is a subalgebra of n̂ and
U(n̂)v = U(s)v because qv = 0. Weight vectors in U(s)v which are not proportional to

v have weights of the form λ − µ where µ ∈ Q̂+, µ 6∈ Nδ; such vectors are not singular.
Hence v is singular. �

6.2.2. Set

N+ =
∑

r≥0

n ⊗ tr = Ñ+ ∩ n̂.

Lemma. Take λ ∈ Λ, µ ∈ Ω(N+). One has

L(λ)λ−µ ⊂ σ(q)L(λ), M ′(λ)λ−µ ⊂ σ(q)M ′(λ).

Proof. Writing n̂− = σ(q) ⊕ σ(s) where s is introduced in the proof of Lemma 6.2.1, we
get U(n̂−) = U(σ(s)) + σ(q)U(n̂−).

One has L(λ) = U(n̂−)vλ. The condition λ ∈ Λ ensures that U(σ(s))vλ does not meet
L(λ)λ−µ. Thus L(λ)λ−µ ⊂ σ(q)L(λ).

For the second inclusion, observe that λ ∈ Λ forces M ′(λ) = U(n̂−)M ′′ where M ′′ :=
∑

s>0M
′(λ)λ−2sδ . The assumption µ ∈ Ω(N+) ensures that U(σ(s))M ′′ does not meet

M(λ)λ−µ. Thus M ′(λ)λ−µ ⊂ σ(q)M ′′ and the second inclusion follows. �

6.2.3. Proposition. For any λ ∈ Λ, µ ∈ Ω(N+) one has

Hr(q, L(λ))λ−µ = 0 and Hr(q,M(λ))λ−µ = 0 for r = 0, 1.

Proof. The first formula follows from Lemma 8.1 and Lemma 6.2.2. The second formula
is an easy consequence of the first one. Indeed, M(λ) has a local series at λ − µ with
simple quotients L(λi) where, by Lemma 6.2.1 (ii), λi = λ− 2siδ for some si ≥ 1. By the
long exact sequence of Lie algebra cohomology, it is enough to show that for r = 0, 1 one
has Hr(q, L(λi))λ−µ = 0 for all indexes i. The last follows from the first formula and the
fact that λi ∈ Λ since Λ is τ2s-stable. �

6.3. Let m be an even positive number. Fix u = h(−m) ∈ H−. In this subsection we
construct for each λ ∈ Λ a singular vector v(h,m) ∈M(λ) satisfying

HC+(v(h,m)) = h(−m).
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6.3.1. Let T2k : N+ + Ch→ B be a linear map given by

T2k(t
s ⊗ u) = ts−2k ⊗ u.

Observe that T2k is N+-invariant..

6.3.2. Notation. View B = H⊕ N+ as a q-module via the adjoint action. Consider the
natural grading on ĝ: ĝ0 = gl(n), ĝs = ts⊗sl(n) for s 6= 0 and for a homogeneous subspace
X ⊂ ĝ set Xs := X ∩ ĝs. Set

N := Ch +
∑

s≥0

ts ⊗ n+, N ′ :=
∑

s≥m

ts ⊗ n+, V := Ch+
∑

0≤s<m

ts ⊗ n+;

note that N,N ′ are q-submodule of B and V is an n̂0-submodule of N .

Let V ∗ be the orthogonal compliment of N ′ in N∗ that is

V ∗ := {f ∈ Hom(N,C)| f(N ′) = 0}.

Notice that V ∗ viewed as n̂0-module is dual to V .

Both N,N ′ are (q + ĥ)-modules. View N∗ and V ∗ as (q + ĥ)-modules via the antiau-
tomorphism − id. Let h∗ ∈ V ∗ be the “dual to” h that is h∗(h) = 1, h∗(a) = 0 for all
a ∈

∑

s≥0 t
s ⊗ n+.

6.3.3. Lemma. For any λ ∈ Λ there exists a unique q-homomorphism ψ : V ∗ → M(λ)
such that ψ(h∗) = vλ.

Proof. Recall that Ω(q) ⊂ Q̂+ and so the action of q raises the weight. As a result,

V ∗ admits an increasing (ĥ + q)-filtration {W k}k≥0 with one-dimensional factors and
W 0 = Ch∗.

Define a twisted ĥ-action on M(λ) by h.v = (h − (λ)(h))v for h ∈ ĥ, v ∈ M(λ). The

twisted action is compatible with the action of q; view M(λ) as (ĥ + q)-module with

respect to this action and notice that ψ is a (ĥ + q)-homomorphism . In the formulas

below we use this twisted (ĥ + q)-module structure on M(λ); Hom stands for Hom(ĥ+q).

Let T ν be a one-dimensional (ĥ + q)-module of weight ν (i.e. qT ν = 0, h|T ν = ν(h) id).
The short exact sequence

0 →W k−1 → W k → T ν → 0

gives
0 → Hom(T ν,M(λ)) = H0(q,M(λ))ν′ → Hom(W k,M(λ)) →
→ Hom(W k−1,M(λ)) → Ext1(T ν,M(λ)) = H1(q,M(λ))ν′ ,

where all Hom stands for Hom(ĥ+q) and ν ′ := λ− sδ + ν. For k > 0 one has ν − sδ ∈ Q̂−
−

and so

Hom(T ν,M(λ)) = Ext1(T ν,M(λ)) = 0,
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by Proposition 6.2.3. Therefore Hom(W k,M(λ)) = Hom(W k−1,M(λ)). As a result,
Hom(W k,M(λ)) = Hom(W 0,M(λ)) = Hom(Ch∗,M(λ)). The assertion follows. �

6.3.4. Remark that ψ shifts weights by λ+ rδ that is ψ(V ∗
−rδ−µ) ⊂M(λ)λ−µ.

6.3.5. Retain notation of 6.3.1, 6.3.2.

Proposition. Let m be an even positive number. Fix λ ∈ Λ and h ∈ h. Let ψ :
V ∗ →M(λ) be a q-homomorphism constructed in Lemma 6.3.3, let γ : ĝ⊗M(λ) → M(λ)
be the natural map γ(u⊗ v) = uv, and let id′ ∈ V ⊗ V ∗ corresponds to the identity map
V → V . Then

v(h,m) = γ
(

(Tm ⊗ ψ) id′
)

satisfies HC+(v(h,m)) = h(−m) and v(h,m) is singular.

Proof. Let B be a weight basis of V ∩ N+; then

B ′ := {h} ∪B

is a weight basis of V . For b ∈ B denote by b∗ the element of the dual basis {h∗} ∪B∗ of
V ∗. One has

v(h,m) = h(−m)vλ +
∑

b∈B

Tm(b)ψ(b∗).

Since N+ is Tm-stable, Tm(b) ∈ N+ and so HC+(v(h,m)) = h(−m).

Let us check that v(h,m) is singular. In the light of Lemma 6.2.1 it is enough to verify
that qv(h,m) = 0.

It is easy to see that

(8) Tm([g, x]) = [g, Tm(x)] for all g ∈ q, x ∈ V.

Take u ∈ q. Using (8) and the fact that ψ is a q-homomorphism we have

(9)
uv(h,m) =

∑

b∈B′ uTm(b)ψ(b∗)
=

∑

b∈B′[u, Tm(b)]ψ(b∗) + (−1)p(u)p(b)Tm(b)uψ(b∗)
=

∑

b∈B′ Tm([u, b])ψ(b∗) + (−1)p(u)p(b)Tm(b)uψ(b∗).

For bs ∈ B ′ write

[u, bs] =
∑

csjbj + ws where ws ∈
∑

t≥−m

N+
t .

Then
ub∗s = (−1)p(u)p(b∗s)+1

∑

cjsb
∗
j

and (9) gives

uv(h,m) =
∑

s

Tm(ws)ψ(b∗s) = ψ
(

∑

s

Tm(ws)b
∗
s

)

,

where the last equality follows from the fact that ψ is q-invariant and Tm(
∑

t≥m N+
t ) ⊂ q.
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Denote by wt a the weight of a. One has wtws = wtu + wt bs and wt b∗s = −wt bs so
wtTm(ws)b

∗
s = mδ + wtu ∈ Ω(B) because wtu ∈ Ω(N+). However Tm(ws)b

∗
s ∈ V ∗ and

Ω(V ∗) = −Ω(V ) ⊂ −Ω(N+) ∪ {0}. Thus Tm(ws)b
∗
s = 0 or Tm(ws)b

∗
s has zero weight. If

wtu 6= mδ we obtain Tm(ws)b
∗
s = 0 so uv(h,m) = 0 as required.

It remains to check the case when u has weight mδ that is u = h′(m) for some h′ ∈ h.
Let us show that

∑

s

Tm(ws)b
∗
s = 0.

As we have shown the left-hand side has zero weight so is proportional to h∗. Thus we need
to verify that

∑

s(Tm(ws)b
∗
s)(h) = 0. Observe that for any x ∈ V one has [h′(m), x] ∈

∑

t≥m N+
t and so ws = [h′(m), bs]. Therefore Tm(ws) = Tm([h′(m), bs]) = h′(wt bs)bs

because h′(m) is even. Then
∑

s

(Tm(ws)b
∗
s)(h) =

∑

s

h′(wt bs)(bsb
∗
s)(h) =

∑

s

(−1)p(bs)+1h′(wt bs)h(wt bs) = strV (ad h)(ad h′).

Recall that V = Ch+
∑m−1

j=0 n+ ⊗ tj. One has

strn+⊗tj(ad h)(ad h
′) = (−1)j trn+(ad h)(ad h′);

since m is even we obtain strV (ad h)(adh′) = 0 and this completes the proof. �

7. Proof of 5.1 (A) and of Theorem 1.2.2 (iii)

7.1. Proof of 5.1 (A). Set

N+ :=
∑

r>0

t−r ⊗ n+, N− :=
∑

r≥0

t−r ⊗ n−, H1 :=
∑

r>0

t−2r+1 ⊗ h = H−,1.

Notice that N+, N−, H1 are Lie subalgebras of n̂−. In a Shapovalov matrix Sν consider the
minor corresponding to the space U(N+)U(N−)U(H1). The leading term of this minor
takes form

∏

α∈∆̂+\∆̂+

Im,0

Drα(ν)
α ,

for some rα(ν) ≥ 0, see [GS]. From 2.2.1 it follows that this minor is a non-zero poly-
nomial. Therefore for a generic λ the space U(N+)U(N−)U(H1)vλ does not meet M ′(λ).
This proves (A) of 5.1.

7.2. Proof of Theorem 1.2.2 (iii). We need to show that for a generic λ the submodule
generated by a singular weight vector in M(λ) is a Verma module.

Take λ such that for any s ≥ 0 the assertion of Theorem 1.2.2 (i) holds for λ′ := λ−2sδ.
Let v ∈M(λ)λ−2sδ be a singular vector. The submodule M generated by v is a quotient of
M(λ−2sδ). If M 6= M(λ−2sδ) then M = M(λ−2sδ)/M ′′ where M ′′ contains a singular
vector v′. Write v = uvλ, v

′ = u′vλ−2sδ, (u, u′ ∈ U(n̂−)). Then uu′ = 0. By Theorem 1.2.2
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(i) HC+(u),HC+(u′) 6= 0. Hence HC+(uu′) = HC+(u′)HC+(u) 6= 0. and this contradicts
to u′u = 0. This proves Theorem 1.2.2 (iii).

7.3. Remark. Now we can precisely formulate the condition on λ in Theorem 1.2.2.

From 7.1 we see that Theorem 1.2.2 (i), (ii) hold if the minors corresponding to
(

U(N+)U(N−)U(H1)
)

ν
in the Shapovalov matrices Sν are non-zero at λ for each ν ∈ Q̂+.

Since Q̂+ this condition excludes countably many hypersurfaces.

From 7.2 we see that for Theorem 1.2.2 (iii) it is enough if Theorem 1.2.2 (i), (ii) hold
for λ− 2sδ for each s ≥ 0. This again excludes countably many hypersurfaces.

Using a Shapovalov technique it is easy to see that the leading term of the above minors
is not divisible by K; thus these minors are not identically equal to zero at any hyperplane
{λ : K(λ) = k} (k ∈ C). Hence Theorem 1.2.2 holds for a generic weight at each level.

8. A vanishing lemma

If p is a Lie algebra, N is a p-module and N ′ is a subspace of N , denote by pN ′ the
vector space spanned by xv where x ∈ p, v ∈ N ′.

8.1. Lemma. Let m be a subalgebra of n̂. Assume that λ, µ ∈ ĥ∗ are such that

L(λ)µ ⊂ σ(m)L(λ), M ′(λ)µ ⊂ σ(m)M ′(λ)

then

Hr(m, L(λ))µ = 0 for r = 0, 1.

Proof. Let l = m + ĥ. Obviously,

Extr
l (V,W ) = Extr

σ(l)(W
σ, V σ).

In what follows we consider only extensions which are semi-simple over ĥ. If T ν is the
one-dimensional l module of weight ν, we have to show that

Extr
l (T

λ−ν, L(λ)) = 0

for r = 0, 1, which is equivalent to proving

Extr
σ(l)(L(λ), T λ−ν) = 0,

since (T µ)σ ∼= T µ and L(λ)σ ∼= L(λ).

First we note that that Vµ ⊂ σ(m)V implies Homσ(l)(V, T
µ) = 0 for any σ(l)-module

V . Indeed, let f ∈ Homσ(l)(V, T
µ), then f(v) 6= 0 for some v ∈ Vµ. But v = Xw for some

X ∈ σ(m), w ∈ V and f(w) = 0 because the weight of w is greater than µ. Contradiction.
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Hence Homσ(l)(L(λ), T λ−ν) = 0 and Homσ(l)(M
′(λ), T λ−ν) = 0. Now we use the exact

sequence
0 →M ′(λ) → M(λ) → L(λ) → 0.

The Verma module M(λ) is free over σ(m) and hence projective over σ(l). Therefore

Ext1
σ(l)(M(λ), T λ−ν) = 0.

Now applying the long exact sequence for Ext and using

Homσ(l)(M
′(λ), T λ−ν) = 0

one immediately obtains
Ext1σ(l)(L(λ), T λ−ν) = 0

as required. �
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