SHAPOVALOV FORMS FOR POISSON LIE SUPERALGEBRAS

MARIA GORELIK ${ }^{\dagger}$ AND VERA SERGANOVA

[^0]
1. Introduction

Poisson Lie superalgebras are the superalgebras of functions on a symplectic supermanifold. Subquotients of Poisson superalgebras, called superalgebras of Hamiltonian vector fields, appear in the list of simple finite-dimensional Lie superalgebras (see [K]). If the dimension of a supermanifold is even, then a Poisson superalgebra admits a nondegenerate invariant even symmetric form. In particular, there exists a Casimir operator. Poisson superalgebras also have root decomposition in the sense of [PS]. It was noticed in [GL] that in such situation it is possible to define a Shapovalov form using the approach suggested in $[\mathrm{KK}]$. We give a precise formula for determinant of Shapovalov form for finite-dimensional Poisson superalgebra $\mathfrak{p o}(0 \mid 2 n)$ with $n \geq 2$. The case $n=1$ is well-known since $\mathfrak{p o}(0 \mid 2)$ is isomorphic to $\mathfrak{g l}(1 \mid 1)$. We show that, contrary to the case of classical Lie superalgebras, the Jantzen filtration of a Verma module can be infinite.

One can use another approach to the problem of finding the Shapovalov form. It is well known that there is a deformation G_{h} of the Poisson superalgebra $\mathfrak{p o}(0 \mid 2 n)$ such that the Lie superalgebra G_{h} is isomorphic to $\mathfrak{g l}\left(2^{n-1} \mid 2^{n-1}\right)$ for $h \neq 0$. The Shapovalov form for the latter superalgebra is known (see [KKK]). Since the deformation preserves a Cartan subalgebra and triangular decomposition, one can obtain the Shapovalov for $\mathfrak{p o}(0 \mid 2 n)$ isomorphic to G_{0} by evaluating the Shapovalov form for G_{h} at $h=0$. However this method seems more difficult. Indeed, several root subspaces are glued together when $h=0$. The condition on weights of irreducible Verma modules also change dramatically. It seems that the direct approach using the Casimir operator works better. One can illustrate this on a simple example. Indeed, it is much easier to evaluate the Shapovalov form for the Heisenberg algebra than to consider its deformation to $\mathfrak{s l}(2)$ and go back using the result for $\mathfrak{s l}(2)$.

2. Preliminary

2.1. Poisson superalgebra $\mathfrak{p o}(0 \mid n)$. Let $\Lambda(n)$ be the Grassman superalgebra in ξ_{1}, \ldots, ξ_{n}. The Poisson Lie superalgebra $\mathfrak{p o}(0 \mid n)$ can be described as $\Lambda(n)$ endowed with the bracket

$$
[f, g]=(-1)^{p(f)+1} \sum_{i} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial \xi_{i}}
$$

It is easy to see that $[\mathfrak{g}, \mathfrak{g}]=\sum_{i=0}^{n-1} \Lambda^{i}(n)$. Let $\int: \mathfrak{g} \rightarrow \mathbb{C}$ be such a map that $\operatorname{ker} \int=$ $[\mathfrak{g}, \mathfrak{g}]$ and $\int\left(\xi_{1} \ldots \xi_{n}\right)=1$. For $f, g \in \Lambda(n)$ define

$$
B(f, g):=\int f g .
$$

Clearly, B is a non-degenerate invariant bilinear form on \mathfrak{g}. If n is even, B gives rise to the quadratic Casimir element.

In this text we consider the even case $\mathfrak{g}:=\mathfrak{p o}(0 \mid 2 n)$.
2.2. Triangular decompositions. A triangular decomposition of a Lie superalgebra \mathfrak{g} can be constructed as follows (see [PS]). A Cartan subalgebra is a nilpotent subalgebra which coincides with its normalizer. It is proven in [PS] that any two Cartan subalgebras are conjugate by an inner automorphism. Fix a Cartan subalgebra \mathfrak{h}. Then \mathfrak{g} has a generalized root decomposition

$$
\mathfrak{g}:=\mathfrak{h}+\oplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}
$$

where Δ is a subset of \mathfrak{h}^{*} and

$$
\mathfrak{g}_{\alpha}=\left\{x \in \mathfrak{g} \mid(a d(h)-\alpha(h))^{\operatorname{dim} \mathfrak{g}}(x)=0\right\} .
$$

In case considered in this paper a root space \mathfrak{g}_{α} is either odd or even. That allows one to define the parity on the set of roots Δ. Denote by $\mathfrak{g}_{\overline{0}}$ (resp., $\mathfrak{g}_{\overline{1}}$) the even (resp., odd) component of \mathfrak{g}. Denote by Δ_{0} (resp. Δ_{1}) the set of non-zero weights of \mathfrak{g}_{0} (resp., \mathfrak{g}_{1}) with respect to \mathfrak{h}. Then Δ is a disjoint union of Δ_{0} and Δ_{1}.

Now fix $h \in \mathfrak{h}_{0}^{*}$ satisfying $\alpha(h) \in \mathbb{R} \subset\{0\}$ for all $\alpha \in \Delta$. Set

$$
\begin{aligned}
& \Delta^{+}:=\{\alpha \in \Delta \mid \alpha(h)>0\}, \\
& \mathfrak{n}^{+}:=\sum_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}
\end{aligned}
$$

where \mathfrak{g}_{α} is the weight space corresponding to α.
Define Δ^{-}and \mathfrak{n}^{-}similarly. Then $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}$is a triangular decomposition.
2.3. Notation. Denote by Δ_{0}^{+}(resp., Δ_{1}^{+}) the set of even (resp., odd) positive roots. Let $Q \subset \mathfrak{h}^{*}$ be the root lattice that is the \mathbb{Z}-span of Δ^{+}and let Q^{+}be the $\mathbb{Z}_{\geq 0}$-span of Δ^{+}. Introduce the standard partial ordering on \mathfrak{h}^{*} by setting $\mu \leq \nu$ if $\nu-\mu \in Q^{+}$.

Throughout the paper α and β stand for positive roots.
For $\alpha \in \Delta^{+}$denote by D_{α} the matrix of natural pairing $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \rightarrow \mathfrak{h}$ given by $(x, y) \mapsto[x, y]$.
2.4. Verma modules. From now on suppose that \mathfrak{h} is even and commutative. Set $\mathfrak{b}:=\mathfrak{h}+\mathfrak{n}^{+}$. For each $\lambda \in \mathfrak{h}^{*}$ define $M(\lambda):=U(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{b})} k_{\lambda}$ where k_{λ} is a onedimensional \mathfrak{b}-module which is trivial as \mathfrak{n}^{+}-module and corresponds to λ as \mathfrak{h}-module. Each Verma module has a unique maximal submodule $\overline{M(\lambda)}$. The corresponding simple module $V(\lambda):=M(\lambda) / \overline{M(\lambda)}$ is called a highest weight simple module.
2.5. Shapovalov determinants. For finite dimensional semisimple Lie algebras N. Shapovalov $([\mathrm{Sh}])$ constructed a bilinear form $\mathcal{U}\left(\mathfrak{n}^{-}\right) \otimes \mathcal{U}\left(\underline{\mathfrak{n}^{-}}\right) \rightarrow S(\mathfrak{h})$ whose kernel at a given point $\lambda \in \mathfrak{h}^{*}$ determines the maximal submodule $\overline{M(\lambda)}$ of a Verma module $M(\lambda)$. In particular, a Verma module $M(\lambda)$ is simple if and only if the kernel of Shapovalov form at λ is equal to zero. The Shapovalov form can be realized as a direct sum of forms S_{ν}; for each S_{ν} one can define its determinant (Shapovalov determinant). The zeroes of Shapovalov determinants determine when a Verma module is reducible.
2.5.1. A Shapovalov form for a Lie superalgebra \mathfrak{g} with an even commutative Cartan subalgebra \mathfrak{h} can be described as follows.

Identify $U(\mathfrak{h})$ with $S(\mathfrak{h})$. Let HC: $U(\mathfrak{g}) \rightarrow S(\mathfrak{h})$ be the Harish-Chandra projection i.e., a projection along the decomposition $U(\mathfrak{g})=U(\mathfrak{h}) \oplus\left(\mathfrak{n}^{-} U(\mathfrak{g})+U(\mathfrak{g}) \mathfrak{n}^{+}\right)$. Define a form $\mathcal{U}\left(\mathfrak{n}^{+}\right) \otimes \mathcal{U}\left(\mathfrak{n}^{-}\right) \rightarrow S(\mathfrak{h})$ by setting $S(x, y):=\mathrm{HC}(x y)$. Using the natural identification of a Verma module $M(\lambda)$ with $\mathcal{U}\left(\mathfrak{n}^{-}\right)$, one easily sees that $\overline{M(\lambda)}$ coincides with the "right kernel" of the evaluated form $S(\lambda): \mathcal{U}\left(\mathfrak{n}^{+}\right) \otimes \mathcal{U}\left(\mathfrak{n}^{-}\right) \rightarrow k$ i.e., $\overline{M(\lambda)}=\{y \in$ $\mathcal{U}\left(\mathfrak{n}^{-}\right) \mid(x, y)(\lambda)=0$ for all $\left.x\right\}$.

Notice that $S(x, y)=0$ if $x \in \mathcal{U}\left(\mathfrak{n}^{+}\right)_{\nu}, y \in \mathcal{U}\left(\mathfrak{n}^{-}\right)_{-\mu}$ and $\nu \neq \mu$. Thus $S=\sum_{\nu \in Q^{+}} S_{\nu}$ where S_{ν} is the restriction of S to $\mathcal{U}\left(\mathfrak{n}^{+}\right)_{\nu} \otimes \mathcal{U}\left(\mathfrak{n}^{-}\right)_{-\nu}$ By the above, $\operatorname{dim} V(\lambda)_{\lambda-\nu}=$ codim $\operatorname{ker}_{r} S_{\nu}(\lambda)$ where ker_{r} stands for the "right kernel".
2.5.2. Assume that $\operatorname{dim} \mathcal{U}\left(\mathfrak{n}^{+}\right)_{\nu}=\operatorname{dim} \mathcal{U}\left(\mathfrak{n}^{-}\right)_{-\nu}<\infty$ for all $\nu \in Q^{+}$. Then $\operatorname{det} S_{\nu}$ is an element of $S(\mathfrak{h})$ defined up to an invertible scalar. One obtains the following criterion of simplicity of a Verma module: $M(\lambda)$ is simple iff $\operatorname{det} S_{\nu}(\lambda) \neq 0$ for all ν.
2.6. Case $\mathfrak{g}:=\mathfrak{p o}(0 \mid 2 n)$. The algebra $\mathfrak{p o}(0 \mid 2 n)$ admits a \mathbb{Z}-grading

$$
\mathfrak{g}=\oplus_{i=-2}^{2 n-2} \mathfrak{g}_{i}
$$

which is obtained from the natural grading on $\Lambda(2 n)$ by the shift by -2 .
2.6.1. We choose generators $\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}$ of $\Lambda(2 n)$ in such a way that

$$
[f, g]=(-1)^{p(f)+1} \sum_{i} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial \eta_{i}}+\frac{\partial f}{\partial \eta_{i}} \frac{\partial g}{\partial \xi_{i}}
$$

2.6.2. Set $I:=\{1, \ldots, n\}$ and for each $J \subset I$ define

$$
h_{J}:=\prod_{i \in J} \xi_{i} \eta_{i}
$$

The reader can check that the span of h_{J} is a Cartan subalgebra of \mathfrak{g} which we denote by \mathfrak{h}. If $h_{J} \in \mathfrak{g}_{i}$ for $i \neq 0$, ad h is nilpotent. Therefore the set of roots Δ can be realized as a subset of \mathfrak{h}_{0}^{*} where the embedding $\mathfrak{h}_{0}^{*} \subset \mathfrak{h}_{0}^{*}$ comes from the decomposition $\mathfrak{h}_{\overline{0}}=\mathfrak{h}_{-2} \oplus \mathfrak{h}_{0} \oplus \mathfrak{h}_{2} \oplus \ldots \oplus \mathfrak{h}_{2 n-2}$.

Using the standard notation for $\mathfrak{g}_{0}=\mathfrak{s o}(n)$, one obtains

$$
\Delta=\left\{ \pm \varepsilon_{i_{1}} \pm \ldots \pm \varepsilon_{i_{k}}: 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n\right\} .
$$

Clearly, \mathfrak{h}_{-2} is spanned by $h_{\emptyset} \in \Lambda^{0}(2 n)$ and coincides with the centre of \mathfrak{g}. Define triangular decompositions as in 2.2.
2.6.3. Example. Take $h:=2^{n-1} \varepsilon_{1}^{*}+2^{n-2} \varepsilon_{2}^{*}+\ldots+\varepsilon_{n}^{*}$. Then

$$
\Delta^{+}=\left\{\varepsilon_{i_{1}} \pm \varepsilon_{i_{2}} \pm \ldots \pm \varepsilon_{i_{k}}: i_{1}<i_{2}<\ldots<i_{k}\right\} .
$$

Simple roots are

$$
\pi:=\left\{\varepsilon_{1}-\varepsilon_{2}-\ldots-\varepsilon_{n}, \varepsilon_{2}-\ldots-\varepsilon_{n}, \ldots, \varepsilon_{n-1}-\varepsilon_{n}, \varepsilon_{n}\right\}
$$

2.6.4. Example. For $n=3$ take $h:=4 \varepsilon_{1}^{*}+3 \varepsilon_{2}^{*}+2 \varepsilon_{3}^{*}$. Then

$$
\pi:=\left\{\varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{3},-\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right\}
$$

2.6.5. The group of signed permutations of $\{1, \ldots, n\}$ is a subgroup of Aut \mathfrak{g} : a non-signed permutation acts as permutation of indexes and the permutation $i \mapsto-i$ corresponds to the interchange $\xi_{i} \leftrightarrow \eta_{i}$. As a consequence, any root is simple with respect to a suitable triangular decomposition (such a decomposition can be obtained from one in the first example by the action of a signed permutation).
2.7. Casimir element C. Let C be the quadratic Casimir element corresponding to the non-degenerate bilinear form B defined in 2.1. Clearly, C has degree $2 n-4$ with respect to the \mathbb{Z}-grading defined in 2.6 . One easily sees that

$$
\begin{equation*}
\mathrm{HC}(C)=\sum_{J \subset I} h_{J} h_{I \backslash J}+h_{C} \text { for some } h_{C} \in \mathfrak{h}_{2 n-4} . \tag{1}
\end{equation*}
$$

3. Shapovalov determinants for $\mathfrak{p o}(0 \mid 2 n), n>2$.

Recall that any root is of the form $\alpha=\sum s_{i} \varepsilon_{i}$ where $s_{i} \in\{-1,0,1\}$; for $\alpha \in \Delta^{+}$set

$$
h_{\alpha}:=\sum_{j \in I} h_{j}(\alpha) h_{I \backslash\{j\}}=\sum_{j \in I} s_{j} h_{I \backslash\{j\}} .
$$

Notice that $h_{\alpha} \in \mathfrak{h}_{2 n-4}^{*}$.
In this section we will prove the following formula.

3.1. Theorem.

$$
\operatorname{det} S_{\nu}=\prod_{\alpha \in \Delta_{0}^{+}} h_{\alpha}^{\operatorname{dim} \mathfrak{g}_{\alpha} \sum_{m=1}^{\infty} \tau(\nu-m \alpha)} \prod_{\alpha \in \Delta_{1}^{+}} h_{\alpha}^{\operatorname{dim} \mathfrak{g}_{\alpha} \sum_{\mathrm{m}=1}^{\infty}(-1)^{\mathrm{m}+1} \tau(\nu-\mathrm{m} \alpha)}
$$

Proof. Fix $\nu \in Q^{+}$. Recall that $\operatorname{det} S_{\nu}(\lambda)=0$ iff $M(\lambda)$ has a primitive vector of weight $\lambda-\mu$ for some $0<\mu \leq \nu$. Therefore

$$
\operatorname{det} S_{\nu}(\lambda)=0 \Longrightarrow \mathrm{HC}(C)(\lambda)=\mathrm{HC}(C)(\lambda-\mu) \text { for some } 0<\mu \leq \nu
$$

Combining the formula (1) and the fact that $h(\mu)=0$ if $h \in \mathfrak{h}$ has a non-zero degree and $\mu \in Q^{+}$, we obtain
$\mathrm{HC}(C)(\lambda)-\mathrm{HC}(C)(\lambda-\mu)=2 \sum_{J \subset I} h_{J}(\mu) h_{I \backslash J}(\lambda)-\sum_{J \subset I} h_{J}(\mu) h_{I \backslash J}(\mu)=2 \sum_{j \in I} h_{j}(\mu) h_{I \backslash\{j\}}(\lambda)$.
Therefore

$$
\operatorname{det} S_{\nu}(\lambda)=0 \quad \Longrightarrow \quad h_{\mu}(\lambda)=0 \text { for some } 0<\mu \leq \nu
$$

where $h_{\mu}:=\sum_{j \in I} h_{j}(\mu) h_{I \backslash\{j\}}$. In other words, all zeros of the polynomial det S_{ν} lie in the union of hyperplanes $h_{\mu}=0$. Hence det $S_{\nu}=\prod_{0<\mu \leq \nu} h_{\mu}^{d_{\mu}(\nu)}$ for some $d_{\mu}(\nu) \geq 0$. In particular, $\operatorname{det} S_{\nu}$ is homogeneous and thus coincides with its leading term. Now Theorem 4.2 reduces the assertion to the formula $\operatorname{det} D_{\alpha}=h_{\alpha}^{\operatorname{dim} \mathfrak{g}_{\alpha}}$.

To prove the last formula, recall that D_{α} is a matrix of the natural pairing $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \rightarrow \mathfrak{h}$. This matrix does not depend on a triangular decomposition. Since any root is simple with respect to a certain triangular decomposition, we can assume that α is simple that is $D_{\alpha}=S_{\alpha}$. Then the above reasoning gives $\operatorname{det} D_{\alpha}=h_{\alpha}^{d_{\alpha}(\alpha)}$. Observe that the entries of D_{α} lie in \mathfrak{h} and so the degree of $\operatorname{det} D_{\alpha}$ is $\operatorname{dim} \mathfrak{g}_{\alpha}$; hence $d_{\alpha}(\alpha)=\operatorname{dim} \mathfrak{g}_{\alpha}$ as required.

3.2. Corollary.

(i) A Verma module $M(\lambda)$ is simple if and only if $h_{\alpha}(\lambda) \neq 0$ for all $\alpha \in \Delta^{+}$.
(ii) A Verma module $M(\lambda)$ contains a primitive vector of weight $\lambda-\alpha$ if $h_{\alpha}(\lambda)=0$.

4. The leading term of a Shapovalov determinant.

Let \mathfrak{g} be a Lie superalgebra with a fixed triangular decomposition such that
(i) the Cartan subalgebra is even and commutative;
(ii) $\operatorname{dim} \mathcal{U}\left(\mathfrak{n}^{+}\right)_{\nu}=\operatorname{dim} \mathcal{U}\left(\mathfrak{n}^{-}\right)_{-\nu}<\infty$ for all $\nu \in Q^{+}$.

Define Shapovalov determinants as in 2.5.2. In this section we compute the leading term of Shapovalov determinants for such algebras.
4.1. Retain notation of 2.2,2.3. The Kostant partition function $\tau: Q \rightarrow \mathbb{Z}_{\geq 0}$ is defined by the formula

$$
\operatorname{ch} \mathcal{U}\left(\mathfrak{n}^{-}\right)=\prod_{\alpha \in \Delta_{1}^{+}}\left(1+e^{-\alpha}\right) \prod_{\alpha \in \Delta_{0}^{+}}\left(1-e^{-\alpha}\right)^{-1}=: \sum_{\eta \in Q} \tau(\eta) e^{-\eta}
$$

Note that $\tau\left(Q \backslash Q^{+}\right)=0$.
4.2. Theorem. The leading term of $\operatorname{det} S_{\nu}$ is equal to

$$
\prod_{\alpha \in \Delta_{0}^{+}}\left(\operatorname{det} D_{\alpha}\right)^{\sum_{m=1}^{\infty} \tau(\nu-m \alpha)} \prod_{\alpha \in \Delta_{1}^{+}}\left(\operatorname{det} D_{\alpha}\right)^{\sum_{m=1}^{\infty}(-1)^{m+1} \tau(\nu-m \alpha)}
$$

up to a non-zero scalar.
4.3. Proof. Denote by $\tilde{\Delta}_{0}^{+}, \tilde{\Delta}_{1}^{+}$the corresponding multisets of roots (the multiplicity of α is equal to $\operatorname{dim} \mathfrak{g}_{\alpha}$). Set $\tilde{\Delta}^{+}:=\tilde{\Delta}_{0}^{+} \cup \tilde{\Delta}_{1}^{+}$.

Definition. A vector $\mathbf{k}=\left\{k_{\alpha}\right\}_{\alpha \in \tilde{\Delta}^{+}}$is called a partition of $\nu \in Q^{+}$if

$$
\nu=\sum_{\alpha \in \tilde{\Delta}^{+}} k_{\alpha} \alpha ; \quad k_{\alpha} \in \mathbb{Z}_{\geq 0} \text { for } \alpha \in \tilde{\Delta}_{0}^{+} \text {and } k_{\alpha} \in\{0,1\} \text { for } \alpha \in \tilde{\Delta}_{1}^{+} .
$$

Denote by $\mathcal{P}(\nu)$ the set of all partitions of ν. Clearly, $|\mathcal{P}(\nu)|=\tau(\nu)$.
4.3.1. Set $|\mathbf{k}|:=\sum_{\alpha \in \tilde{\Delta}^{+}} k_{\alpha}$. Take $\alpha \in \Delta^{+}$and let $\alpha^{(i)}: i=1, \ldots, \operatorname{dim} \mathfrak{g}_{\alpha}$ be the corresponding elements of the multiset $\tilde{\Delta}^{+}$. Denote by \mathbf{k}_{α} the subpartition $\mathbf{k}_{\alpha}:=\left(k_{\alpha}^{(i)}\right.$: $i=1, \ldots, \operatorname{dim} \mathfrak{g}_{\alpha}$).

Define an equivalence relation on $\mathcal{P}(\nu)$ by setting $\mathbf{k} \approx \mathbf{m}$ if $\left|\mathbf{k}_{\alpha}\right|=\left|\mathbf{m}_{\alpha}\right|$ for all α. Thus the equivalence classes are indexed by vectors $\kappa=\left(\kappa_{\alpha}: \alpha \in \Delta^{+}\right)$where $\mathbf{k} \in \kappa$ iff $\left|\mathbf{k}_{\alpha}\right|=\kappa_{\alpha}$ for all α. Set

$$
\operatorname{supp} \kappa=\left\{\alpha \in \Delta^{+}: \kappa_{\alpha} \neq 0\right\}
$$

and define supp \mathbf{k} similarly. Set

$$
\mathcal{P}(r, \alpha):=\{\mathbf{k}|\operatorname{supp} \mathbf{k}=\{\alpha\},|\mathbf{k}|=r\}
$$

and denote by $p(r, \alpha)$ the cardinality of $\mathcal{P}(r, \alpha)$.
4.3.2. Fix a total ordering on $\tilde{\Delta}^{+}$compatible with the standard partial ordering on \mathfrak{h}^{*}. Fix bases $\left\{e_{\alpha}: \alpha \in \tilde{\Delta}^{+}\right\}$of \mathfrak{n}^{+}and $\left\{f_{\alpha}: \alpha \in \tilde{\Delta}^{+}\right\}$of \mathfrak{n}^{-}where e_{α} (resp., f_{α}) has weight α (resp., $-\alpha$). For every $\mathbf{k} \in \mathcal{P}(\nu)$ set

$$
\mathbf{f}^{\mathbf{k}}:=\prod_{\alpha \in \tilde{\Delta}^{+}} f_{\alpha}^{k_{\alpha}}
$$

where the factors are arranged with respect to the total ordering: the first factor corresponds to the minimal root. Define $\mathbf{e}^{\mathbf{k}}$ by the similar formula but with factors arranging in the reverse order. The sets $\left\{\mathbf{f}^{\mathbf{k}}: \mathbf{k} \in \mathcal{P}(\nu)\right\}$ and $\left\{\mathbf{e}^{\mathbf{k}}: \mathbf{k} \in \mathcal{P}(\nu)\right\}$ form PBW bases of $\mathcal{U}\left(\mathfrak{n}^{-}\right)_{-\nu}$ and $\mathcal{U}\left(\mathfrak{n}^{+}\right)_{\nu}$ respectively. Let S_{ν} be the matrix of Shapovalov form written in these bases: its columns and rows are indexed by the partitions $\mathbf{k} \in \mathcal{P}(\nu)\}$ and the (\mathbf{k}, \mathbf{m}) th entry is $\mathrm{HC}\left(\mathbf{e}^{\mathbf{k}} \mathbf{f}^{\mathbf{m}}\right)$.
4.4. Let A, B be two square matrices. One can naturally define $A \otimes B$ as the matrix of the corresponding linear operator.

On the other hand, view B as a matrix of bilinear form on V and define

$$
\begin{aligned}
& \tilde{S}^{k}(B)\left(v_{1} \otimes \ldots \otimes v_{k}, v_{k}^{\prime} \otimes \ldots \otimes v_{1}^{\prime}\right):=\sum_{\sigma \in S_{k}} \prod_{i=1}^{k} B\left(v_{i}, v_{\sigma(i)}^{\prime}\right), \\
& \tilde{\Lambda}^{k}(B)\left(v_{1} \otimes \ldots \otimes v_{k}, v_{k}^{\prime} \otimes \ldots \otimes v_{1}^{\prime}\right):=\sum_{\sigma \in S_{k}}(-1)^{\operatorname{sgn} \sigma} \prod_{i=1}^{k} B\left(v_{i}, v_{\sigma(i)}^{\prime}\right) .
\end{aligned}
$$

Now define $S^{k}(B)$ and $\Lambda^{k}(B)$ as the restrictions of $\tilde{S}^{k}(B)$ and $\tilde{\Lambda}^{k}(B)$ to $S^{k}(V)$ and $\Lambda^{k}(V)$ respectively.
4.4.1. Let C be an $m \times m$ matrix with entries in $S(\mathfrak{h})$. For each $\sigma \in S_{m}$ let $\operatorname{deg}(C, \sigma)$ be the degree of $\prod_{1}^{m} c_{i \sigma(i)}$; put $\operatorname{deg}(C):=\max _{\sigma} \operatorname{deg}(C, \sigma)$ and denote by $\operatorname{det}^{\prime} C$ the term of degree $\operatorname{deg}(C)$ in the polynomial $\operatorname{det} C$. Thus $\operatorname{det}^{\prime} C$ is either zero or equal to the leading term of $\operatorname{det} C$.
4.5. Fix $\alpha \in \Delta^{+}$. Let $D_{m \alpha}$ be the submatrix of the Shapovalov matrix $S_{m \alpha}$ formed by the entries whose both coordinates lie in $\mathcal{P}(m, \alpha)$. For $m=1$ this definition gives the same matrix as was defined in 2.3. Observe that $D_{m \alpha}=S_{m \alpha}$ if α is simple. Recall that all entries of D_{α} has degree one and so $\operatorname{det}^{\prime} D_{\alpha}=\operatorname{det} D_{\alpha}$.

By Lemma 4.6 .1 the leading terms of the entries of $D_{m \alpha}$ form the matrix $S^{m}\left(D_{\alpha}\right)$ if α is even and the matrix $\Lambda^{m}\left(D_{\alpha}\right)$ if α is odd. Consequently,

$$
\operatorname{det}^{\prime} D_{m \alpha}= \begin{cases}\operatorname{det} S^{m}\left(D_{\alpha}\right) & \text { if } \alpha \text { is even } \\ \operatorname{det} \Lambda^{m}\left(D_{\alpha}\right) & \text { if } \alpha \text { is odd }\end{cases}
$$

Notice that for any square matrix A one has $\operatorname{det} S^{m}(A)=c(\operatorname{det} A)^{\frac{m s\left(S^{m}(A)\right)}{s(A)}}$ where $c \in \mathbb{Z}_{>0}$ and $s(B)$ stands for the size of a matrix $B ; \operatorname{det} \Lambda^{m}(A)$ has the similar formula. Hence, up to a non-zero constant, one has

$$
\begin{equation*}
\operatorname{det}^{\prime} D_{m \alpha}=\left(\operatorname{det} D_{\alpha}\right)^{\frac{m p(m, \alpha)}{\operatorname{dim} \mathfrak{g}_{\alpha}}} . \tag{2}
\end{equation*}
$$

4.6. By 4.6.2 the degrees of the entries of kth row (resp., column) of a Shapovalov matrix S_{ν} is not greater than $|\mathbf{k}|$. Moreover, if $|\mathbf{k}|=|\mathbf{m}|$ the degree of (\mathbf{k}, \mathbf{m}) th entry is less than $|\mathbf{k}|$ if $\mathbf{k} \not \approx \mathbf{m}$. Finally, if $\mathbf{k} \approx \mathbf{m}$ then the leading term of (\mathbf{k}, \mathbf{m}) th entry coincides with the leading term of $c_{\mathbf{k}, \mathbf{m}}:=\prod_{\alpha \in \Delta^{+}} \mathrm{HC}\left(\mathbf{e}^{\mathbf{k}_{\alpha}} \mathbf{f}^{\mathbf{m}_{\alpha}}\right)$; note that $\mathrm{HC}\left(\mathbf{e}^{\mathbf{k}_{\alpha}} \mathbf{f}^{\mathbf{m}_{\alpha}}\right)$ is an entry of the matrix $D_{\left|\mathbf{k}_{\alpha}\right| \alpha}$.

As a consequence, $\operatorname{deg}\left(S_{\nu}\right)=\sum_{\mathbf{k} \in \mathcal{P}(\nu)}|\mathbf{k}|$ and $\operatorname{det}^{\prime} S_{\nu}=\operatorname{det}^{\prime} C_{\nu}$ where $C_{\nu}=\left(c_{\mathbf{k}, \mathbf{m}}\right)_{\mathbf{k}, \mathbf{m} \in \mathcal{P}(\nu)}$ and $c_{\mathbf{k}, \mathbf{m}}$ is given by the above formula for $\mathbf{k} \approx \mathbf{m}, c_{\mathbf{k}, \mathbf{m}}=0$ for $\mathbf{k} \not \approx \mathbf{m}$. Thus C_{ν} is a block matrix with the blocks indexed by the equivalence classes of partitions; the block indexed by $\kappa=\left(\kappa_{\alpha}\right)$ is the tensor product of the matrices $D_{\kappa_{\alpha} \alpha}$ for all $\alpha \in \Delta^{+}$.

Observe that $\operatorname{det}(A \otimes B)=(\operatorname{det} A)^{s(B)}(\operatorname{det} B)^{s(A)}$. Using the formula (2) we get

$$
\operatorname{det}^{\prime} S_{\nu}=\prod_{\kappa} \prod_{\alpha \in \Delta^{+}}\left(\operatorname{det}^{\prime} D_{\kappa_{\alpha} \alpha}\right)^{\prod_{\beta \neq \alpha} p\left(\kappa_{\beta}, \beta\right)}=\prod_{\alpha \in \Delta^{+}}\left(\operatorname{det} D_{\alpha}\right)^{d(\alpha)}
$$

where

$$
d(\alpha)=\sum_{\kappa} \frac{\kappa_{\alpha} \prod_{\beta} p\left(\kappa_{\beta}, \beta\right)}{\operatorname{dim} \mathfrak{g}_{\alpha}}=\frac{1}{\operatorname{dim} \mathfrak{g}_{\alpha}} \sum_{\mathbf{k} \in \mathcal{P}(\nu)}\left|\mathbf{k}_{\alpha}\right|
$$

since $\prod_{\beta} p\left(\kappa_{\beta}, \beta\right)$ is equal to the cardinality of κ. Now Lemma 4.6 .3 completes the proof of Theorem 4.2.
4.6.1. Lemma. The leading terms of the entries of $D_{m \alpha}$ form the matrix $S^{m}\left(D_{\alpha}\right)$ if α is even and the matrix $\Lambda^{m}\left(D_{\alpha}\right)$ if α is odd.
4.6.2. Lemma. Take $\nu \in Q^{+}$and $\mathbf{k}, \mathbf{m} \in \mathcal{P}(\nu)$. Then
(i) $\operatorname{deg} \mathrm{HC}\left(\mathbf{e}^{\mathbf{k}} \mathbf{f}^{\mathbf{m}}\right) \leq \min (|\mathbf{k}|,|\mathbf{m}|)$.
(ii) Assume that $\operatorname{deg} \mathrm{HC}\left(\mathbf{e}^{\mathbf{k}} \mathbf{f}^{\mathbf{m}}\right)=|\mathbf{k}|=|\mathbf{m}|$. Then

$$
\mathbf{k} \approx \mathbf{m}
$$

and the leading term of $\mathrm{HC}\left(\mathbf{e}^{\mathbf{k}} \mathbf{f}^{\mathbf{m}}\right)$ is equal to the leading term of

$$
\prod_{\alpha \in \Delta^{+}} \mathrm{HC}\left(\mathbf{e}^{\mathbf{k}_{\alpha}} \mathbf{f}^{\mathbf{m}_{\alpha}}\right)
$$

Proof is by induction on $\nu \in Q^{+}$.

4.6.3. Lemma.

(i) For any $\alpha \in \Delta_{0}^{+}$one has

$$
\sum_{\mathbf{k} \in \mathcal{P}(\nu)}\left|\mathbf{k}_{\alpha}\right|=\operatorname{dim} \mathfrak{g}_{\alpha} \sum_{m=1}^{\infty} \tau(\nu-m \alpha)
$$

(ii) For any $\alpha \in \Delta_{1}^{+}$one has

$$
\sum_{\mathbf{k} \in \mathcal{P}(\nu)}\left|\mathbf{k}_{\alpha}\right|=\operatorname{dim} \mathfrak{g}_{\alpha} \sum_{m=1}^{\infty}(-1)^{m+1} \tau(\nu-m \alpha)
$$

Proof. Recall that $\left|\mathbf{k}_{\alpha}\right|=\sum_{i=1}^{\operatorname{dim} \mathfrak{g}_{\alpha}} k_{\alpha}^{(i)}$. For each i the formula

$$
\sum_{\mathbf{k} \in \mathcal{P}(\nu)} k_{\alpha}^{(i)}=\sum_{m=1}^{\infty} \tau(\nu-m \alpha)
$$

for $\alpha \in \Delta_{0}^{+}$and a similar formula for $\alpha \in \Delta_{1}^{+}$can be obtained by a standard reasonings (see, for instance [G2], 3.3.1).

5. The CaSE $\mathfrak{p o}(0 \mid 4)$.

5.1. For the Lie superalgebra $\mathfrak{g}:=\mathfrak{p o}(0 \mid 4)$ all triangular decompositions are conjugated. We fix a triangular decomposition with the following positive roots: $\varepsilon_{1} \pm \varepsilon_{2}, \varepsilon_{1}, \varepsilon_{2}$. One easily sees that $\mathrm{HC}(C)=2\left(h_{\emptyset} h_{1,2}+h_{1} h_{2}-h_{1}\right)$ where h_{1} stands for $h_{\{1\}}$ and other notations are similar.
5.2. The even roots $\varepsilon_{1} \pm \varepsilon_{2}$ have multiplicity one and $D_{\varepsilon_{1} \pm \varepsilon_{2}}= \pm h_{1}+h_{2}$. The odd roots $\varepsilon_{1}, \varepsilon_{2}$ have multiplicity two. To compute $D_{\varepsilon_{2}}$ notice that the weight space $\mathfrak{g}_{\varepsilon_{2}}$ (resp., $\mathfrak{g}_{-\varepsilon_{2}}$) has a basis $\left\{\xi_{2}, \xi_{1} \eta_{1} \xi_{2}\right\}$ (resp., $\left\{\eta_{2}, \xi_{1} \eta_{1} \eta_{2}\right\}$). The matrix $D_{\varepsilon_{2}}$ written in these bases takes form

$$
D_{\varepsilon_{2}}=\left(\begin{array}{ccc}
h_{\emptyset} & \mid & h_{1} \\
-- & - & -- \\
h_{1} & \mid & 0
\end{array}\right)
$$

and so $\operatorname{det} D_{\varepsilon_{2}}=-h_{1}^{2}$; similarly $\operatorname{det} D_{\varepsilon_{1}}=-h_{2}^{2}$. By Theorem 4.2, the leading term of $\operatorname{det} S_{\nu}$ is, up to a non-zero scalar, equal to

$$
\left(h_{1}-h_{2}\right)^{d(\nu)}\left(h_{1}+h_{2}\right)^{d^{\prime}(\nu)} h_{1}^{c_{2}(\nu)} h_{2}^{c_{1}(\nu)}
$$

where $d(\nu):=\sum_{m=1}^{\infty} \tau\left(\nu-m\left(\varepsilon_{1}-\varepsilon_{2}\right)\right), d^{\prime}(\nu):=\sum_{m=1}^{\infty} \tau\left(\nu-m\left(\varepsilon_{1}+\varepsilon_{2}\right)\right)$ and $c_{i}:=$ $2 \sum_{m=1}^{\infty}(-1)^{m+1} \tau\left(\nu-m \varepsilon_{i}\right)$.
5.3. Arguing as in 3.1, we conclude that all Shapovalov determinants admit linear factorizations and factors of $\operatorname{det} S_{\nu}$ are of the form $h_{2}(\mu) h_{1}+h_{1}(\mu) h_{2}-h_{1}(\mu) h_{2}(\mu)-h_{1}(\mu)$ where $0<\mu \leq \nu$. Comparing with the above expression of the leading term we conclude that

$$
\operatorname{det} S_{\nu}=\prod_{k=1}^{\infty}\left(h_{2}-h_{1}+k-1\right)^{d_{k}}\left(h_{2}+h_{1}-k-1\right)^{d_{k}^{\prime}} h_{1}^{c_{2}(\nu)}\left(h_{2}-1\right)^{c_{1}(\nu)}
$$

where the multiplicities d_{k}, d_{k}^{\prime} are non-negative integers which satisfy the conditions

$$
\sum_{k} d_{k}=d(\nu)=\sum_{m=1}^{\infty} \tau\left(\nu-m\left(\varepsilon_{1}-\varepsilon_{2}\right)\right), \quad \sum_{k} d_{k}^{\prime}=d^{\prime}(\nu)=\sum_{m=1}^{\infty} \tau\left(\nu-m\left(\varepsilon_{1}+\varepsilon_{2}\right)\right)
$$

(in particular, only finitely many multiplicities are non-zero and thus the above product is finite). Now the standard reasoning based on a use of Jantzen filtration gives $d_{k}=$ $\tau\left(\nu-k\left(\varepsilon_{1}-\varepsilon_{2}\right)\right)$ and $d_{k}^{\prime}=\tau\left(\nu-k\left(\varepsilon_{1}+\varepsilon_{2}\right)\right)$. Finally, up to a non-zero scalar, one has

$$
\begin{aligned}
\operatorname{det} S_{\nu}=\prod_{k=1}^{\infty} & \left(h_{2}-h_{1}+k-1\right)^{\tau\left(\nu-k\left(\varepsilon_{1}-\varepsilon_{2}\right)\right)}\left(h_{2}+h_{1}-k-1\right)^{\tau\left(\nu-k\left(\varepsilon_{1}+\varepsilon_{2}\right)\right)} \\
& h_{1}^{2 \sum_{m=1}^{\infty}(-1)^{m+1} \tau\left(\nu-m \varepsilon_{2}\right)}\left(h_{2}-1\right)^{2 \sum_{m=1}^{\infty}(-1)^{m+1} \tau\left(\nu-m \varepsilon_{1}\right)} .
\end{aligned}
$$

6. On the Jantzen filtration of a generic reducible Verma module.

The notion of Jantzen filtration on a Verma module was introduced in [Ja] for semisimple Lie algebras. It can be easily extended to superalgebra case. One has to take into account however that the vector ρ is no longer "regular" in a sense that hypersurfaces $\operatorname{det} S_{\nu}=0$ contain straight lines parallel to ρ so that in the construction of the Jantzen filtration one should use a/any regular vector $\rho^{\prime} \in \mathfrak{h}^{*}$ instead of ρ - see [G3], 7.1 for details.
6.1. Retain notation of 2.4. The Jantzen filtration on $M(\lambda)$ is a decreasing filtration with the following properties:

$$
\begin{gather*}
\mathcal{F}^{0}(M(\lambda))=M(\lambda), \quad \mathcal{F}^{1}(M(\lambda))=\bar{M}(\lambda), \quad \bigcap_{r=0}^{\infty} \mathcal{F}^{r}(M(\lambda))=0 \\
d_{\nu}(\lambda)=\sum_{r \geq 1} \operatorname{dim} \mathcal{F}^{r}(M(\lambda))_{\lambda-\nu} \tag{3}
\end{gather*}
$$

where $d_{\nu}(\lambda)$ is the order of zero of the polynomial $\operatorname{det} S_{\nu}$ at the point λ (if $\operatorname{det} S_{\nu}=\prod p_{i}^{r_{i}}$ where p_{i} are irreducible then $\left.d_{\nu}(\lambda)=\sum_{i: p_{i}(\lambda)=0} r_{i}\right)$. The formula (3) is proven in [Ja] and is called "sum fomula".

For $M(\lambda)$ being simple one has $\mathcal{F}^{1}(M(\lambda))=0$. For basic classical (except $\left.\mathfrak{p s l}(2 \mid 2)\right)$ or Q-type Lie superalgebras the Jantzen filtration has length two, i.e. $\mathcal{F}^{2}(M(\lambda))=0$, if $M(\lambda)$ is a "generic" reducible Verma module. More precisely, $\mathcal{F}^{2}(M(\lambda))=0$ if λ lies on exactly one of irreducible components of a hypersurface $\operatorname{det} S_{\nu}=0$. Remarkably, this is far from being true in our case. We demonstrate this phenomenon on some examples below.

Set $\mathfrak{g}:=\mathfrak{p o}(0 \mid 2 n)$. In the examples below we assume that

$$
\begin{equation*}
\lambda \text { is a generic point of the hyperplane } h_{\alpha}=k \tag{4}
\end{equation*}
$$

where $h_{\alpha}=k$ is an irreducible component of a hypersurface $\operatorname{det} S_{\nu}=0$. For $n>2$ one has $k=0$ and genericity means that $h_{\beta}(\lambda) \neq 0$ for $\beta \in \Delta^{+}, \beta \neq \alpha$.

Denote by v_{λ} the highest weight vector of $M(\lambda)$.
6.2. The algebra $\mathfrak{g}=\mathfrak{p o}(0 \mid 4)$. If $\operatorname{dim} \mathfrak{g}_{\alpha}=1$ (i.e., $\alpha=\varepsilon_{1} \pm \varepsilon_{2}$) and λ satisfies (4) one can easily deduce from the sum formula (3) that $\mathcal{F}^{2}(M(\lambda))=0$.
6.2.1. The case $\alpha:=\varepsilon_{2}$. Since ε_{2} is simple, one has $S_{\varepsilon_{2}}=D_{\varepsilon_{2}}$ (see 5.2 for the explicit formula). One has $\operatorname{dim} \mathcal{U}\left(\mathfrak{n}^{-}\right)_{-2 \varepsilon_{2}}=1$ and the Shapovalov matrix $S_{2 \varepsilon_{2}}$ is equal to h_{1}^{2}.

Let λ satisfy (4); since $h_{\alpha}=h_{1}$ one has $h_{1}(\lambda)=0$. Set $f_{\varepsilon_{2}}:=\xi_{1} \eta_{1} \eta_{2}$. If $h_{\emptyset}(\lambda) \neq 0$ the vector $f_{\varepsilon_{2}} v_{\lambda}$ lies in $\mathcal{F}^{2}(M(\lambda))$. Now using the "genericity" of λ one can deduce from the
sum formula (3) that $f_{\varepsilon_{2}} v_{\lambda}$ generates $\mathcal{F}^{1}(M(\lambda))=\mathcal{F}^{2}(M(\lambda))$ and that $\mathcal{F}^{3}(M(\lambda))=0$. Note that a Jordan-Hölder series of $M(\lambda)$ has length two.

If $h_{\emptyset}(\lambda)=0$ the term $\mathcal{F}^{1}\left(M(\lambda)\right.$ is generated by $M(\lambda)_{\lambda-\alpha}\left(\mathcal{F}^{1}(M(\lambda)\right.$ is isomorphic to the sum of two quotients of $M(\lambda-\alpha)$) and $\mathcal{F}^{2}(M(\lambda)) \cong V(\lambda-2 \alpha)$; one has $\mathcal{F}^{3}(M(\lambda))=0$ as before.

Hence in a generic point of the hyperplane $h_{1}=0$ the Jantzen filtration has length three and $\mathcal{F}^{1}(M(\lambda))=\mathcal{F}^{2}(M(\lambda))$ iff $h_{\emptyset}(\lambda)=0$.

6.3. The algebra $\mathfrak{g}=\mathfrak{p o}(0 \mid 2 n), n>2$.

6.3.1. Claim. Let α be a simple even root and λ be such that $h_{\alpha}(\lambda)=0$. Then the Jantzen filtration of $M(\lambda)$ is infinite.

Proof. Fix any homogeneous (with respect to the \mathbb{Z}-grading) bases in \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$. The matrix $S_{\alpha}=D_{\alpha}$ written in these bases has a column with only non-zero entry: this column corresponds to $f_{\alpha} \in \mathfrak{g}_{-\alpha}$ having the maximal degree and the non-zero entry corresponds to $e_{\alpha} \in \mathfrak{g}_{\alpha}$ having the minimal degree; the non-zero entry is equal to h_{α}. As a consequence, the matrix $S_{k \alpha}$ also has a column with only non-zero entry: this column corresponds to f_{α}^{k} and the entry is h_{α}^{k}. This gives $f_{\alpha}^{k} v_{\lambda} \in \mathcal{F}^{k}(M(\lambda))$. Hence the Jantzen filtration is infinite.
6.3.2. Notice that a submodule generated by $f_{\alpha}^{k} v_{\lambda}$ is isomorphic to $M(\lambda-k \alpha)$; denote this submodule by M_{k}. Clearly, $M_{k} \subset \mathcal{F}^{k}(M(\lambda))$.

If $\operatorname{dim} \mathfrak{g}_{\alpha}=1$, the sum formula (3) implies that $\mathcal{F}^{k}(M(\lambda))=M_{k}$ for λ satisfying (4).
If $\operatorname{dim} \mathfrak{g}_{\alpha}>1$ one has $\mathcal{F}^{k}(M(\lambda)) \neq M_{k}$ for $k=1$ or for $k=2$, since the sum formula gives $\sum_{r \geq 1} \operatorname{dim} \mathcal{F}^{r}(M(\lambda))_{\lambda-\alpha}=\operatorname{dim} \mathfrak{g}_{\alpha}$.

For example, let α be a simple even root and $\operatorname{dim} \mathfrak{g}_{\alpha}=2$. Then

$$
S_{\alpha}=\left(\begin{array}{ccc}
h^{\prime} & \mid & h_{\alpha} \\
-- & - & -- \\
h_{\alpha} & \mid & 0
\end{array}\right)
$$

for some $h^{\prime} \in \mathfrak{h}_{2 n-6}^{*}$. If $h_{\alpha}(\lambda)=0$ and $h^{\prime} \neq 0$ one has $f_{\alpha} v_{\lambda} \in \mathcal{F}^{2}(M(\lambda))$ that is $M_{1} \subset$ $\mathcal{F}^{2}(M(\lambda))$. However, a natural guess that $M_{1} \subset \mathcal{F}^{\operatorname{dim} \mathfrak{g}_{\alpha}}(M(\lambda))$ is wrong. The example $\operatorname{dim} \mathfrak{g}_{\alpha}=4$ shows that in this case $\left.\mathcal{F}^{1}(M(\lambda))_{\lambda-\alpha}=\mathcal{F}^{2}(M(\lambda))\right)_{\lambda-\alpha}$ is a two dimensional subspace and so $\mathcal{F}^{3}(M(\lambda))_{\lambda-\alpha}=0$; in particular, M_{1} lies in $\mathcal{F}^{2}(M(\lambda))$ and does not lie in $\mathcal{F}^{3}(M(\lambda))$.
6.4. Element T. The enveloping algebra of $\mathfrak{g}:=\mathfrak{p o}(0 \mid 2 n)$ contains a special even element T which commutes with the even elements of \mathfrak{g} and anticommutes with the odd one, see [G1]. Recall that $U(\mathfrak{g})$ admits the canonical filtration and that the associated graded algebra is $S(\mathfrak{g})$. The algebra $S(\mathfrak{g})$ contains $\Lambda \mathfrak{g}_{1}$. It turns out that the image of T in
$S(\mathfrak{g})$ belongs to $\Lambda^{\text {top }} \mathfrak{g}_{\overline{1}}$. These conditions (commutational relations and $\operatorname{gr} T \in \Lambda^{\text {top }} \mathfrak{g}_{\overline{1}}$) determines T up to a non-zero scalar. If \mathfrak{g} has a \mathbb{Z}-grading then the degree of T is equal to the degree of $\Lambda^{\text {top }} \mathfrak{g}_{1}$.

The element T acts on a Verma module in the following way: it acts by $\operatorname{HC}(T)(\lambda)$ id on the \mathbb{Z}_{2}-homogeneous component containing a highest weight vector and by $-\mathrm{HC}(T)(\lambda)$ id on another \mathbb{Z}_{2}-homogeneous component.
6.4.1. Take $n>2$. By Corollary 3.2 (ii), $M(\lambda)$ contains a primitive vector of weight $\lambda-\alpha$ if $h_{\alpha}(\lambda)=0$. One can deduce from this statement that the polynomial $\mathrm{HC}(T)$ is divisible by h_{α} for $\alpha \in \Delta_{1}^{+}$.

Conjecture: $\mathrm{HC}(T)=\prod_{\alpha \in \Delta_{1}^{+}} h_{\alpha}^{\operatorname{dim} \mathfrak{g}_{\alpha}}$ up to a non-zero scalar for $n>2$.
6.4.2. Claim. For $\mathfrak{g}:=\mathfrak{p o}(0 \mid 4)$ one has $\mathrm{HC}(T)=h_{1}^{2}\left(h_{2}-1\right)^{2}$ up to a non-zero scalar.

Proof. First, let us show that $t:=\mathrm{HC}(T)$ is divisible by h_{1}^{2}. Set $\alpha:=\varepsilon_{2}$ and let f_{1}, f_{2} (resp., e_{1}, e_{2}) be a basis of $\mathfrak{g}_{-\alpha_{2}}$ (resp., \mathfrak{g}_{α}). Write $T=t+\sum_{i, j=1,2} f_{i} \phi_{i j} e_{j}+\sum y_{r} x_{r}$, where $y_{r} \in U(\mathfrak{g}), x_{r} \in \mathfrak{n}_{\mu(r)}^{+}$for some $\mu(r) \neq-\alpha_{2}$. Let v be a primitive vector. Then $T v=t v$ and $T f_{r} v=-f_{r} T v$ and

$$
T f_{r} v=t f_{r} v+\sum_{i, j=1,2} f_{i} \phi_{i j} e_{j} f_{r} v=t f_{r} v+\sum_{i=1,2} f_{i}(\Phi S)_{i r} v
$$

where $\Phi=\left(\phi_{i j}\right)$ and $S:=S_{\alpha}$ is the Shapovalov matrix written with respect to the above base. Putting $f_{1}:=\eta_{2}, f_{2}:=\xi_{1} \eta_{1} \eta_{2}$ we get

$$
t f_{1}=f_{1}\left(t-\frac{\partial t}{\partial h_{2}}\right)-f_{2} \frac{\partial t}{\partial h_{12}}, \quad t f_{2}=f_{2}\left(t-\frac{\partial t}{\partial h_{2}}\right)
$$

Hence

$$
\Phi S=\left(\begin{array}{cc}
-2 t+\frac{\partial t}{\partial h_{2}} & 0 \\
\frac{\partial t}{\partial h_{12}} & -2 t+\frac{\partial t}{\partial h_{2}}
\end{array}\right)
$$

Now substituting $S=S_{\alpha}$ (see 5.2) we conclude that t is divisible by h_{1}^{2} (this reflects the fact that for λ being a generic point of the hyperplane $h_{1}=0$ one has $\left.\mathcal{F}^{2}(M(\lambda))_{\lambda-\alpha} \neq 0\right)$.

It remains to show that t is divisible by $\left(h_{2}-1\right)^{2}$. Take λ such that $\lambda\left(h_{1}-h_{2}\right)=$ $k \in \mathbb{Z}_{\geq 0}$. Then $M(\lambda)$ has a primitive vector of the weight $\lambda-(k+1)\left(\varepsilon_{1}-\varepsilon_{2}\right)$ and so $t(\lambda)=t\left(\lambda-(k+1)\left(\varepsilon_{1}-\varepsilon_{2}\right)\right)$. As a consequence, t is stable under the involution of the algebra $S(\mathfrak{h})$ which acts by id on $\mathfrak{h}_{-2}+\mathfrak{h}_{2}$ and acts on \mathfrak{h}_{0} by mapping h_{1} to $h_{2}-1$. Since t is divisible by h_{1}^{2}, t is divisible by $\left(h_{2}-1\right)^{2}$ as well. The claim follows.

References

[G1] M. Gorelik, On the ghost centre of Lie superalgebras, Les Annales de l'institut Fourier, t. 50 (2000), p.1745-1764
[G2] M. Gorelik, Kac construction of the centre $\mathcal{Z}(\mathfrak{g})$, Journal of non-linear Math. Phys., 11 (2004) p. 325-349.
[G3] M. Gorelik, Shapovalov determinants of Q-type Lie superalgebras, preprint (2004).
[GL] P. Grozman, D. Leites, The Shapovalov determinant for the Poisson superalgebras, Journal of non-linear Math. Phys., 8 (2001), p. 220-228.
[Ja] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math., 750 (1979).
[K] V. G. Kac, Lie superalgebras, Advances in Math., 26 (1977), p. 8-96.
[KKK] V. G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc, Nat. Acad. Sci, 81 (1984), no.2, Phys, Sci., p. 645-647.
[KK] V. G. Kac, D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Advances in Math., 34 (1979), p. 97-108.
[PS] I. Penkov, V. Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, International Journal of Math., 5 (1994), p. 389-419.
[Sh] N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Functional Anal. Appl., 6 (1972), p. 307-312 (in Russian).

Dept. of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel, email: maria.gorelik@weizmann.ac.il

Dept. of Mathematics, University of California at Berkeley, Berkeley, CA 94720 email:serganov@math.berkeley.edu

[^0]: ${ }^{\dagger}$ Incumbent of the Frances and Max Hersh career development chair.

