SHAPOVALOV FORMS FOR POISSON LIE SUPERALGEBRAS

MARIA GORELIK [†] AND VERA SERGANOVA

 $^{^\}dagger$ Incumbent of the Frances and Max Hersh career development chair.

1. INTRODUCTION

Poisson Lie superalgebras are the superalgebras of functions on a symplectic supermanifold. Subquotients of Poisson superalgebras, called superalgebras of Hamiltonian vector fields, appear in the list of simple finite-dimensional Lie superalgebras (see [K]). If the dimension of a supermanifold is even, then a Poisson superalgebra admits a nondegenerate invariant even symmetric form. In particular, there exists a Casimir operator. Poisson superalgebras also have root decomposition in the sense of [PS]. It was noticed in [GL] that in such situation it is possible to define a Shapovalov form using the approach suggested in [KK]. We give a precise formula for determinant of Shapovalov form for finite-dimensional Poisson superalgebra $\mathfrak{po}(0|2n)$ with $n \geq 2$. The case n = 1 is well-known since $\mathfrak{po}(0|2)$ is isomorphic to $\mathfrak{gl}(1|1)$. We show that, contrary to the case of classical Lie superalgebras, the Jantzen filtration of a Verma module can be infinite.

One can use another approach to the problem of finding the Shapovalov form. It is well known that there is a deformation G_h of the Poisson superalgebra $\mathfrak{po}(0|2n)$ such that the Lie superalgebra G_h is isomorphic to $\mathfrak{gl}(2^{n-1}|2^{n-1})$ for $h \neq 0$. The Shapovalov form for the latter superalgebra is known (see [KKK]). Since the deformation preserves a Cartan subalgebra and triangular decomposition, one can obtain the Shapovalov for $\mathfrak{po}(0|2n)$ isomorphic to G_0 by evaluating the Shapovalov form for G_h at h = 0. However this method seems more difficult. Indeed, several root subspaces are glued together when h = 0. The condition on weights of irreducible Verma modules also change dramatically. It seems that the direct approach using the Casimir operator works better. One can illustrate this on a simple example. Indeed, it is much easier to evaluate the Shapovalov form for the Heisenberg algebra than to consider its deformation to $\mathfrak{sl}(2)$ and go back using the result for $\mathfrak{sl}(2)$.

2. Preliminary

2.1. Poisson superalgebra $\mathfrak{po}(0|n)$. Let $\Lambda(n)$ be the Grassman superalgebra in ξ_1, \ldots, ξ_n . The Poisson Lie superalgebra $\mathfrak{po}(0|n)$ can be described as $\Lambda(n)$ endowed with the bracket

$$[f,g] = (-1)^{p(f)+1} \sum_{i} \frac{\partial f}{\partial \xi_i} \frac{\partial g}{\partial \xi_i}$$

It is easy to see that $[\mathfrak{g},\mathfrak{g}] = \sum_{i=0}^{n-1} \Lambda^i(n)$. Let $\int : \mathfrak{g} \to \mathbb{C}$ be such a map that ker $\int = [\mathfrak{g},\mathfrak{g}]$ and $\int (\xi_1 \dots \xi_n) = 1$. For $f,g \in \Lambda(n)$ define

$$B(f,g) := \int fg.$$

Clearly, B is a non-degenerate invariant bilinear form on \mathfrak{g} . If n is even, B gives rise to the quadratic Casimir element.

In this text we consider the even case $\mathfrak{g} := \mathfrak{po}(0|2n)$.

2.2. Triangular decompositions. A triangular decomposition of a Lie superalgebra \mathfrak{g} can be constructed as follows (see [PS]). A Cartan subalgebra is a nilpotent subalgebra which coincides with its normalizer. It is proven in [PS] that any two Cartan subalgebras are conjugate by an inner automorphism. Fix a Cartan subalgebra \mathfrak{h} . Then \mathfrak{g} has a generalized root decomposition

$$\mathfrak{g} := \mathfrak{h} + \oplus_{lpha \in \Delta} \mathfrak{g}_{lpha}$$

where Δ is a subset of \mathfrak{h}^* and

$$\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} | (ad(h) - \alpha(h))^{dim\mathfrak{g}}(x) = 0 \}.$$

In case considered in this paper a root space \mathfrak{g}_{α} is either odd or even. That allows one to define the parity on the set of roots Δ . Denote by $\mathfrak{g}_{\overline{0}}$ (resp., $\mathfrak{g}_{\overline{1}}$) the even (resp., odd) component of \mathfrak{g} . Denote by Δ_0 (resp. Δ_1) the set of non-zero weights of $\mathfrak{g}_{\overline{0}}$ (resp., $\mathfrak{g}_{\overline{1}}$) with respect to \mathfrak{h} . Then Δ is a disjoint union of Δ_0 and Δ_1 .

Now fix $h \in \mathfrak{h}_0^*$ satisfying $\alpha(h) \in \mathbb{R} \subset \{0\}$ for all $\alpha \in \Delta$. Set

$$\Delta^+ := \{ \alpha \in \Delta | \ \alpha(h) > 0 \}, \\ \mathfrak{n}^+ := \sum_{\alpha \in \Delta^+} \mathfrak{g}_\alpha$$

where \mathfrak{g}_{α} is the weight space corresponding to α .

Define Δ^- and \mathfrak{n}^- similarly. Then $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ is a triangular decomposition.

2.3. Notation. Denote by Δ_0^+ (resp., Δ_1^+) the set of even (resp., odd) positive roots. Let $Q \subset \mathfrak{h}^*$ be the root lattice that is the \mathbb{Z} -span of Δ^+ and let Q^+ be the $\mathbb{Z}_{\geq 0}$ -span of Δ^+ . Introduce the standard partial ordering on \mathfrak{h}^* by setting $\mu \leq \nu$ if $\nu - \mu \in Q^+$.

Throughout the paper α and β stand for positive roots.

For $\alpha \in \Delta^+$ denote by D_α the matrix of natural pairing $\mathfrak{g}_\alpha \times \mathfrak{g}_{-\alpha} \to \mathfrak{h}$ given by $(x, y) \mapsto [x, y]$.

2.4. Verma modules. From now on suppose that \mathfrak{h} is even and commutative. Set $\mathfrak{b} := \mathfrak{h} + \mathfrak{n}^+$. For each $\lambda \in \mathfrak{h}^*$ define $M(\lambda) := U(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{b})} k_{\lambda}$ where k_{λ} is a onedimensional \mathfrak{b} -module which is trivial as \mathfrak{n}^+ -module and corresponds to λ as \mathfrak{h} -module. Each Verma module has a unique maximal submodule $\overline{M(\lambda)}$. The corresponding simple module $V(\lambda) := M(\lambda)/\overline{M(\lambda)}$ is called a highest weight simple module.

2.5. Shapovalov determinants. For finite dimensional semisimple Lie algebras N. Shapovalov ([Sh]) constructed a bilinear form $\mathcal{U}(\mathfrak{n}^-) \otimes \mathcal{U}(\mathfrak{n}^-) \to S(\mathfrak{h})$ whose kernel at a given point $\lambda \in \mathfrak{h}^*$ determines the maximal submodule $\overline{M(\lambda)}$ of a Verma module $M(\lambda)$. In particular, a Verma module $M(\lambda)$ is simple if and only if the kernel of Shapovalov form at λ is equal to zero. The Shapovalov form can be realized as a direct sum of forms S_{ν} ; for each S_{ν} one can define its determinant (Shapovalov determinant). The zeroes of Shapovalov determinants determine when a Verma module is reducible. 2.5.1. A Shapovalov form for a Lie superalgebra \mathfrak{g} with an even commutative Cartan subalgebra \mathfrak{h} can be described as follows.

Identify $U(\mathfrak{h})$ with $S(\mathfrak{h})$. Let $\mathrm{HC} : U(\mathfrak{g}) \to S(\mathfrak{h})$ be the Harish-Chandra projection i.e., a projection along the decomposition $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (\mathfrak{n}^- U(\mathfrak{g}) + U(\mathfrak{g})\mathfrak{n}^+)$. Define a form $\mathcal{U}(\mathfrak{n}^+) \otimes \mathcal{U}(\mathfrak{n}^-) \to S(\mathfrak{h})$ by setting $S(x, y) := \mathrm{HC}(xy)$. Using the natural identification of a Verma module $M(\lambda)$ with $\mathcal{U}(\mathfrak{n}^-)$, one easily sees that $\overline{M(\lambda)}$ coincides with the "right kernel" of the evaluated form $S(\lambda) : \mathcal{U}(\mathfrak{n}^+) \otimes \mathcal{U}(\mathfrak{n}^-) \to k$ i.e., $\overline{M(\lambda)} = \{y \in \mathcal{U}(\mathfrak{n}^-) | (x, y)(\lambda) = 0 \text{ for all } x\}$.

Notice that S(x,y) = 0 if $x \in \mathcal{U}(\mathfrak{n}^+)_{\nu}, y \in \mathcal{U}(\mathfrak{n}^-)_{-\mu}$ and $\nu \neq \mu$. Thus $S = \sum_{\nu \in Q^+} S_{\nu}$ where S_{ν} is the restriction of S to $\mathcal{U}(\mathfrak{n}^+)_{\nu} \otimes \mathcal{U}(\mathfrak{n}^-)_{-\nu}$ By the above, dim $V(\lambda)_{\lambda-\nu} =$ codim ker_r $S_{\nu}(\lambda)$ where ker_r stands for the "right kernel".

2.5.2. Assume that $\dim \mathcal{U}(\mathfrak{n}^+)_{\nu} = \dim \mathcal{U}(\mathfrak{n}^-)_{-\nu} < \infty$ for all $\nu \in Q^+$. Then det S_{ν} is an element of $S(\mathfrak{h})$ defined up to an invertible scalar. One obtains the following criterion of simplicity of a Verma module: $M(\lambda)$ is simple iff det $S_{\nu}(\lambda) \neq 0$ for all ν .

2.6. Case $\mathfrak{g} := \mathfrak{po}(0|2n)$. The algebra $\mathfrak{po}(0|2n)$ admits a \mathbb{Z} -grading

$$\mathfrak{g} = \oplus_{i=-2}^{2n-2} \mathfrak{g}_i$$

which is obtained from the natural grading on $\Lambda(2n)$ by the shift by -2.

2.6.1. We choose generators $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n$ of $\Lambda(2n)$ in such a way that

$$[f,g] = (-1)^{p(f)+1} \sum_{i} \frac{\partial f}{\partial \xi_i} \frac{\partial g}{\partial \eta_i} + \frac{\partial f}{\partial \eta_i} \frac{\partial g}{\partial \xi_i}.$$

2.6.2. Set $I := \{1, \ldots, n\}$ and for each $J \subset I$ define

$$h_J := \prod_{i \in J} \xi_i \eta_i$$

The reader can check that the span of h_J is a Cartan subalgebra of \mathfrak{g} which we denote by \mathfrak{h} . If $h_J \in \mathfrak{g}_i$ for $i \neq 0$, ad h is nilpotent. Therefore the set of roots Δ can be realized as a subset of \mathfrak{h}_0^* where the embedding $\mathfrak{h}_0^* \subset \mathfrak{h}_{\overline{0}}^*$ comes from the decomposition $\mathfrak{h}_{\overline{0}} = \mathfrak{h}_{-2} \oplus \mathfrak{h}_0 \oplus \mathfrak{h}_2 \oplus \ldots \oplus \mathfrak{h}_{2n-2}$.

Using the standard notation for $\mathfrak{g}_0 = \mathfrak{so}(n)$, one obtains

$$\Delta = \{ \pm \varepsilon_{i_1} \pm \ldots \pm \varepsilon_{i_k} : 1 \le i_1 < i_2 < \ldots < i_k \le n \}.$$

Clearly, \mathfrak{h}_{-2} is spanned by $h_{\emptyset} \in \Lambda^0(2n)$ and coincides with the centre of \mathfrak{g} . Define triangular decompositions as in 2.2.

2.6.3. **Example.** Take $h := 2^{n-1}\varepsilon_1^* + 2^{n-2}\varepsilon_2^* + \ldots + \varepsilon_n^*$. Then $\Delta^+ = \{\varepsilon_{i_1} \pm \varepsilon_{i_2} \pm \ldots \pm \varepsilon_{i_k} : i_1 < i_2 < \ldots < i_k\}.$

Simple roots are

$$\pi := \{\varepsilon_1 - \varepsilon_2 - \ldots - \varepsilon_n, \varepsilon_2 - \ldots - \varepsilon_n, \ldots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_n\}.$$

2.6.4. Example. For
$$n = 3$$
 take $h := 4\varepsilon_1^* + 3\varepsilon_2^* + 2\varepsilon_3^*$. Then
 $\pi := \{\varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_3, -\varepsilon_1 + \varepsilon_2 + \varepsilon_3\}.$

2.6.5. The group of signed permutations of $\{1, \ldots, n\}$ is a subgroup of Aut \mathfrak{g} : a non-signed permutation acts as permutation of indexes and the permutation $i \mapsto -i$ corresponds to the interchange $\xi_i \leftrightarrow \eta_i$. As a consequence, any root is simple with respect to a suitable triangular decomposition (such a decomposition can be obtained from one in the first example by the action of a signed permutation).

2.7. Casimir element C. Let C be the quadratic Casimir element corresponding to the non-degenerate bilinear form B defined in 2.1. Clearly, C has degree 2n - 4 with respect to the \mathbb{Z} -grading defined in 2.6. One easily sees that

(1)
$$\operatorname{HC}(C) = \sum_{J \subset I} h_J h_{I \setminus J} + h_C \text{ for some } h_C \in \mathfrak{h}_{2n-4}.$$

3. Shapovalov determinants for $\mathfrak{po}(0|2n)$, n > 2.

Recall that any root is of the form $\alpha = \sum s_i \varepsilon_i$ where $s_i \in \{-1, 0, 1\}$; for $\alpha \in \Delta^+$ set

$$h_{\alpha} := \sum_{j \in I} h_j(\alpha) h_{I \setminus \{j\}} = \sum_{j \in I} s_j h_{I \setminus \{j\}}.$$

Notice that $h_{\alpha} \in \mathfrak{h}_{2n-4}^*$.

In this section we will prove the following formula.

3.1. Theorem.

$$\det S_{\nu} = \prod_{\alpha \in \Delta_0^+} h_{\alpha}^{\dim \mathfrak{g}_{\alpha} \sum_{m=1}^{\infty} \tau(\nu - m\alpha)} \prod_{\alpha \in \Delta_1^+} h_{\alpha}^{\dim \mathfrak{g}_{\alpha} \sum_{m=1}^{\infty} (-1)^{m+1} \tau(\nu - m\alpha)}.$$

Proof. Fix $\nu \in Q^+$. Recall that det $S_{\nu}(\lambda) = 0$ iff $M(\lambda)$ has a primitive vector of weight $\lambda - \mu$ for some $0 < \mu \leq \nu$. Therefore

$$\det S_{\nu}(\lambda) = 0 \implies \operatorname{HC}(C)(\lambda) = \operatorname{HC}(C)(\lambda - \mu) \text{ for some } 0 < \mu \leq \nu.$$

Combining the formula (1) and the fact that $h(\mu) = 0$ if $h \in \mathfrak{h}$ has a non-zero degree and $\mu \in Q^+$, we obtain

$$\operatorname{HC}(C)(\lambda) - \operatorname{HC}(C)(\lambda - \mu) = 2\sum_{J \subset I} h_J(\mu) h_{I \setminus J}(\lambda) - \sum_{J \subset I} h_J(\mu) h_{I \setminus J}(\mu) = 2\sum_{j \in I} h_j(\mu) h_{I \setminus \{j\}}(\lambda).$$

Therefore

 $\det S_{\nu}(\lambda) = 0 \implies h_{\mu}(\lambda) = 0 \text{ for some } 0 < \mu \le \nu$

where $h_{\mu} := \sum_{j \in I} h_j(\mu) h_{I \setminus \{j\}}$. In other words, all zeros of the polynomial det S_{ν} lie in the union of hyperplanes $h_{\mu} = 0$. Hence det $S_{\nu} = \prod_{0 < \mu \leq \nu} h_{\mu}^{d_{\mu}(\nu)}$ for some $d_{\mu}(\nu) \geq 0$. In particular, det S_{ν} is homogeneous and thus coincides with its leading term. Now Theorem 4.2 reduces the assertion to the formula det $D_{\alpha} = h_{\alpha}^{\dim \mathfrak{g}_{\alpha}}$.

To prove the last formula, recall that D_{α} is a matrix of the natural pairing $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \to \mathfrak{h}$. This matrix does not depend on a triangular decomposition. Since any root is simple with respect to a certain triangular decomposition, we can assume that α is simple that is $D_{\alpha} = S_{\alpha}$. Then the above reasoning gives det $D_{\alpha} = h_{\alpha}^{d_{\alpha}(\alpha)}$. Observe that the entries of D_{α} lie in \mathfrak{h} and so the degree of det D_{α} is dim \mathfrak{g}_{α} ; hence $d_{\alpha}(\alpha) = \dim \mathfrak{g}_{\alpha}$ as required. \Box

3.2. Corollary.

- (i) A Verma module $M(\lambda)$ is simple if and only if $h_{\alpha}(\lambda) \neq 0$ for all $\alpha \in \Delta^+$.
- (ii) A Verma module $M(\lambda)$ contains a primitive vector of weight $\lambda \alpha$ if $h_{\alpha}(\lambda) = 0$.

4. The leading term of a Shapovalov determinant.

Let \mathfrak{g} be a Lie superalgebra with a fixed triangular decomposition such that

- (i) the Cartan subalgebra is even and commutative;
- (ii) $\dim \mathcal{U}(\mathfrak{n}^+)_{\nu} = \dim \mathcal{U}(\mathfrak{n}^-)_{-\nu} < \infty$ for all $\nu \in Q^+$.

Define Shapovalov determinants as in 2.5.2. In this section we compute the leading term of Shapovalov determinants for such algebras.

4.1. Retain notation of 2.2,2.3. The Kostant partition function $\tau : Q \to \mathbb{Z}_{\geq 0}$ is defined by the formula

$$\operatorname{ch} \mathcal{U}(\mathfrak{n}^{-}) = \prod_{\alpha \in \Delta_{1}^{+}} (1 + e^{-\alpha}) \prod_{\alpha \in \Delta_{0}^{+}} (1 - e^{-\alpha})^{-1} =: \sum_{\eta \in Q} \tau(\eta) e^{-\eta}.$$

Note that $\tau(Q \setminus Q^+) = 0$.

4.2. Theorem. The leading term of det S_{ν} is equal to

$$\prod_{\alpha \in \Delta_0^+} (\det D_\alpha)^{\sum_{m=1}^{\infty} \tau(\nu - m\alpha)} \prod_{\alpha \in \Delta_1^+} (\det D_\alpha)^{\sum_{m=1}^{\infty} (-1)^{m+1} \tau(\nu - m\alpha)}$$

up to a non-zero scalar.

4.3. Proof. Denote by $\tilde{\Delta}_0^+, \tilde{\Delta}_1^+$ the corresponding multisets of roots (the multiplicity of α is equal to dim \mathfrak{g}_{α}). Set $\tilde{\Delta}^+ := \tilde{\Delta}_0^+ \cup \tilde{\Delta}_1^+$.

Definition. A vector $\mathbf{k} = \{k_{\alpha}\}_{\alpha \in \tilde{\Delta}^+}$ is called a *partition of* $\nu \in Q^+$ if

$$\nu = \sum_{\alpha \in \tilde{\Delta}^+} k_{\alpha} \alpha; \quad k_{\alpha} \in \mathbb{Z}_{\geq 0} \text{ for } \alpha \in \tilde{\Delta}_0^+ \text{ and } k_{\alpha} \in \{0, 1\} \text{ for } \alpha \in \tilde{\Delta}_1^+.$$

Denote by $\mathcal{P}(\nu)$ the set of all partitions of ν . Clearly, $|\mathcal{P}(\nu)| = \tau(\nu)$.

4.3.1. Set $|\mathbf{k}| := \sum_{\alpha \in \tilde{\Delta}^+} k_{\alpha}$. Take $\alpha \in \Delta^+$ and let $\alpha^{(i)} : i = 1, \ldots, \dim \mathfrak{g}_{\alpha}$ be the corresponding elements of the multiset $\tilde{\Delta}^+$. Denote by \mathbf{k}_{α} the subpartition $\mathbf{k}_{\alpha} := (k_{\alpha}^{(i)} : i = 1, \ldots, \dim \mathfrak{g}_{\alpha})$.

Define an equivalence relation on $\mathcal{P}(\nu)$ by setting $\mathbf{k} \approx \mathbf{m}$ if $|\mathbf{k}_{\alpha}| = |\mathbf{m}_{\alpha}|$ for all α . Thus the equivalence classes are indexed by vectors $\kappa = (\kappa_{\alpha} : \alpha \in \Delta^+)$ where $\mathbf{k} \in \kappa$ iff $|\mathbf{k}_{\alpha}| = \kappa_{\alpha}$ for all α . Set

$$\operatorname{supp} \kappa = \{ \alpha \in \Delta^+ : \kappa_\alpha \neq 0 \}$$

and define $\operatorname{supp} \mathbf{k}$ similarly. Set

$$\mathcal{P}(r,\alpha) := \{\mathbf{k} | \operatorname{supp} \mathbf{k} = \{\alpha\}, |\mathbf{k}| = r\}$$

and denote by $p(r, \alpha)$ the cardinality of $\mathcal{P}(r, \alpha)$.

4.3.2. Fix a total ordering on $\tilde{\Delta}^+$ compatible with the standard partial ordering on \mathfrak{h}^* . Fix bases $\{e_{\alpha} : \alpha \in \tilde{\Delta}^+\}$ of \mathfrak{n}^+ and $\{f_{\alpha} : \alpha \in \tilde{\Delta}^+\}$ of \mathfrak{n}^- where e_{α} (resp., f_{α}) has weight α (resp., $-\alpha$). For every $\mathbf{k} \in \mathcal{P}(\nu)$ set

$$\mathbf{f}^{\mathbf{k}} := \prod_{\alpha \in \tilde{\Delta}^+} f_{\alpha}^{k_{\alpha}}$$

where the factors are arranged with respect to the total ordering: the first factor corresponds to the minimal root. Define $\mathbf{e}^{\mathbf{k}}$ by the similar formula but with factors arranging in the reverse order. The sets $\{\mathbf{f}^{\mathbf{k}}: \mathbf{k} \in \mathcal{P}(\nu)\}$ and $\{\mathbf{e}^{\mathbf{k}}: \mathbf{k} \in \mathcal{P}(\nu)\}$ form PBW bases of $\mathcal{U}(\mathfrak{n}^{-})_{-\nu}$ and $\mathcal{U}(\mathfrak{n}^{+})_{\nu}$ respectively. Let S_{ν} be the matrix of Shapovalov form written in these bases: its columns and rows are indexed by the partitions $\mathbf{k} \in \mathcal{P}(\nu)\}$ and the (\mathbf{k}, \mathbf{m}) th entry is $\mathrm{HC}(\mathbf{e}^{\mathbf{k}}\mathbf{f}^{\mathbf{m}})$. **4.4.** Let A, B be two square matrices. One can naturally define $A \otimes B$ as the matrix of the corresponding linear operator.

On the other hand, view B as a matrix of bilinear form on V and define

$$\tilde{S}^{k}(B)(v_{1}\otimes\ldots\otimes v_{k},v_{k}'\otimes\ldots\otimes v_{1}'):=\sum_{\sigma\in S_{k}}\prod_{i=1}^{k}B(v_{i},v_{\sigma(i)}'),\\\tilde{\Lambda}^{k}(B)(v_{1}\otimes\ldots\otimes v_{k},v_{k}'\otimes\ldots\otimes v_{1}'):=\sum_{\sigma\in S_{k}}(-1)^{\operatorname{sgn}\sigma}\prod_{i=1}^{k}B(v_{i},v_{\sigma(i)}').$$

Now define $S^k(B)$ and $\Lambda^k(B)$ as the restrictions of $\tilde{S}^k(B)$ and $\tilde{\Lambda}^k(B)$ to $S^k(V)$ and $\Lambda^k(V)$ respectively.

4.4.1. Let C be an $m \times m$ matrix with entries in $S(\mathfrak{h})$. For each $\sigma \in S_m$ let $\deg(C, \sigma)$ be the degree of $\prod_{i=1}^{m} c_{i\sigma(i)}$; put $\deg(C) := \max_{\sigma} \deg(C, \sigma)$ and denote by $\det' C$ the term of degree $\deg(C)$ in the polynomial $\det C$. Thus $\det' C$ is either zero or equal to the leading term of $\det C$.

4.5. Fix $\alpha \in \Delta^+$. Let $D_{m\alpha}$ be the submatrix of the Shapovalov matrix $S_{m\alpha}$ formed by the entries whose both coordinates lie in $\mathcal{P}(m, \alpha)$. For m = 1 this definition gives the same matrix as was defined in 2.3. Observe that $D_{m\alpha} = S_{m\alpha}$ if α is simple. Recall that all entries of D_{α} has degree one and so det' $D_{\alpha} = \det D_{\alpha}$.

By Lemma 4.6.1 the leading terms of the entries of $D_{m\alpha}$ form the matrix $S^m(D_\alpha)$ if α is even and the matrix $\Lambda^m(D_\alpha)$ if α is odd. Consequently,

$$\det' D_{m\alpha} = \begin{cases} \det S^m(D_\alpha) & \text{if } \alpha \text{ is even,} \\ \det \Lambda^m(D_\alpha) & \text{if } \alpha \text{ is odd.} \end{cases}$$

Notice that for any square matrix A one has det $S^m(A) = c(\det A)^{\frac{ms(S^m(A))}{s(A)}}$ where $c \in \mathbb{Z}_{>0}$ and s(B) stands for the size of a matrix B; det $\Lambda^m(A)$ has the similar formula. Hence, up to a non-zero constant, one has

(2)
$$\det' D_{m\alpha} = (\det D_{\alpha})^{\frac{mp(m,\alpha)}{\dim \mathfrak{g}_{\alpha}}}.$$

4.6. By 4.6.2 the degrees of the entries of **k**th row (resp., column) of a Shapovalov matrix S_{ν} is not greater than $|\mathbf{k}|$. Moreover, if $|\mathbf{k}| = |\mathbf{m}|$ the degree of (\mathbf{k}, \mathbf{m}) th entry is less than $|\mathbf{k}|$ if $\mathbf{k} \not\approx \mathbf{m}$. Finally, if $\mathbf{k} \approx \mathbf{m}$ then the leading term of (\mathbf{k}, \mathbf{m}) th entry coincides with the leading term of $c_{\mathbf{k},\mathbf{m}} := \prod_{\alpha \in \Delta^+} \text{HC}(\mathbf{e}^{\mathbf{k}_{\alpha}}\mathbf{f}^{\mathbf{m}_{\alpha}})$; note that $\text{HC}(\mathbf{e}^{\mathbf{k}_{\alpha}}\mathbf{f}^{\mathbf{m}_{\alpha}})$ is an entry of the matrix $D_{|\mathbf{k}_{\alpha}|\alpha}$.

As a consequence, $\deg(S_{\nu}) = \sum_{\mathbf{k}\in\mathcal{P}(\nu)} |\mathbf{k}|$ and $\det' S_{\nu} = \det' C_{\nu}$ where $C_{\nu} = (c_{\mathbf{k},\mathbf{m}})_{\mathbf{k},\mathbf{m}\in\mathcal{P}(\nu)}$ and $c_{\mathbf{k},\mathbf{m}}$ is given by the above formula for $\mathbf{k} \approx \mathbf{m}$, $c_{\mathbf{k},\mathbf{m}} = 0$ for $\mathbf{k} \not\approx \mathbf{m}$. Thus C_{ν} is a block matrix with the blocks indexed by the equivalence classes of partitions; the block indexed by $\kappa = (\kappa_{\alpha})$ is the tensor product of the matrices $D_{\kappa_{\alpha}\alpha}$ for all $\alpha \in \Delta^+$. Observe that $\det(A \otimes B) = (\det A)^{s(B)} (\det B)^{s(A)}$. Using the formula (2) we get

$$\det' S_{\nu} = \prod_{\kappa} \prod_{\alpha \in \Delta^+} (\det' D_{\kappa_{\alpha} \alpha})^{\prod_{\beta \neq \alpha} p(\kappa_{\beta}, \beta)} = \prod_{\alpha \in \Delta^+} (\det D_{\alpha})^{d(\alpha)}$$

where

$$d(\alpha) = \sum_{\kappa} \frac{\kappa_{\alpha} \prod_{\beta} p(\kappa_{\beta}, \beta)}{\dim \mathfrak{g}_{\alpha}} = \frac{1}{\dim \mathfrak{g}_{\alpha}} \sum_{\mathbf{k} \in \mathcal{P}(\nu)} |\mathbf{k}_{\alpha}|$$

since $\prod_{\beta} p(\kappa_{\beta}, \beta)$ is equal to the cardinality of κ . Now Lemma 4.6.3 completes the proof of Theorem 4.2.

4.6.1. Lemma. The leading terms of the entries of $D_{m\alpha}$ form the matrix $S^m(D_{\alpha})$ if α is even and the matrix $\Lambda^m(D_{\alpha})$ if α is odd.

4.6.2. Lemma. Take $\nu \in Q^+$ and $\mathbf{k}, \mathbf{m} \in \mathcal{P}(\nu)$. Then

- (i) deg HC($\mathbf{e}^{\mathbf{k}}\mathbf{f}^{\mathbf{m}}$) $\leq \min(|\mathbf{k}|, |\mathbf{m}|).$
- (ii) Assume that $\deg \operatorname{HC}(\mathbf{e}^{\mathbf{k}}\mathbf{f}^{\mathbf{m}}) = |\mathbf{k}| = |\mathbf{m}|$. Then

$$\mathbf{k} \approx \mathbf{m}$$

and the leading term of $HC(e^k f^m)$ is equal to the leading term of

$$\prod_{\alpha\in\Delta^+} \mathrm{HC}(\mathbf{e}^{\mathbf{k}_{\alpha}}\mathbf{f}^{\mathbf{m}_{\alpha}}).$$

Proof is by induction on $\nu \in Q^+$.

4.6.3. Lemma.

(i) For any $\alpha \in \Delta_0^+$ one has

$$\sum_{\mathbf{k}\in\mathcal{P}(\nu)}|\mathbf{k}_{\alpha}|=\dim\mathfrak{g}_{\alpha}\sum_{m=1}^{\infty}\tau(\nu-m\alpha).$$

(ii) For any $\alpha \in \Delta_1^+$ one has

$$\sum_{\mathbf{k}\in\mathcal{P}(\nu)}|\mathbf{k}_{\alpha}| = \dim\mathfrak{g}_{\alpha}\sum_{m=1}^{\infty}(-1)^{m+1}\tau(\nu-m\alpha).$$

Proof. Recall that $|\mathbf{k}_{\alpha}| = \sum_{i=1}^{\dim \mathfrak{g}_{\alpha}} k_{\alpha}^{(i)}$. For each *i* the formula

$$\sum_{\mathbf{k}\in\mathcal{P}(\nu)}k_{\alpha}^{(i)}=\sum_{m=1}^{\infty}\tau(\nu-m\alpha)$$

for $\alpha \in \Delta_0^+$ and a similar formula for $\alpha \in \Delta_1^+$ can be obtained by a standard reasonings (see, for instance [G2], 3.3.1).

5. The CASE $\mathfrak{po}(0|4)$.

5.1. For the Lie superalgebra $\mathfrak{g} := \mathfrak{po}(0|4)$ all triangular decompositions are conjugated. We fix a triangular decomposition with the following positive roots: $\varepsilon_1 \pm \varepsilon_2, \varepsilon_1, \varepsilon_2$. One easily sees that $\operatorname{HC}(C) = 2(h_{\emptyset}h_{1,2} + h_1h_2 - h_1)$ where h_1 stands for $h_{\{1\}}$ and other notations are similar.

5.2. The even roots $\varepsilon_1 \pm \varepsilon_2$ have multiplicity one and $D_{\varepsilon_1 \pm \varepsilon_2} = \pm h_1 + h_2$. The odd roots $\varepsilon_1, \varepsilon_2$ have multiplicity two. To compute D_{ε_2} notice that the weight space $\mathfrak{g}_{\varepsilon_2}$ (resp., $\mathfrak{g}_{-\varepsilon_2}$) has a basis $\{\xi_2, \xi_1\eta_1\xi_2\}$ (resp., $\{\eta_2, \xi_1\eta_1\eta_2\}$). The matrix D_{ε_2} written in these bases takes form

$$D_{\varepsilon_2} = \begin{pmatrix} h_{\emptyset} & | & h_1 \\ -- & - & -- \\ h_1 & | & 0 \end{pmatrix}$$

and so det $D_{\varepsilon_2} = -h_1^2$; similarly det $D_{\varepsilon_1} = -h_2^2$. By Theorem 4.2, the leading term of det S_{ν} is, up to a non-zero scalar, equal to

$$(h_1 - h_2)^{d(\nu)}(h_1 + h_2)^{d'(\nu)}h_1^{c_2(\nu)}h_2^{c_1(\nu)}$$

where $d(\nu) := \sum_{m=1}^{\infty} \tau(\nu - m(\varepsilon_1 - \varepsilon_2)), d'(\nu) := \sum_{m=1}^{\infty} \tau(\nu - m(\varepsilon_1 + \varepsilon_2))$ and $c_i := 2\sum_{m=1}^{\infty} (-1)^{m+1} \tau(\nu - m\varepsilon_i).$

5.3. Arguing as in 3.1, we conclude that all Shapovalov determinants admit linear factorizations and factors of det S_{ν} are of the form $h_2(\mu)h_1 + h_1(\mu)h_2 - h_1(\mu)h_2(\mu) - h_1(\mu)$ where $0 < \mu \leq \nu$. Comparing with the above expression of the leading term we conclude that

det
$$S_{\nu} = \prod_{k=1}^{\infty} (h_2 - h_1 + k - 1)^{d_k} (h_2 + h_1 - k - 1)^{d'_k} h_1^{c_2(\nu)} (h_2 - 1)^{c_1(\nu)}$$

where the multiplicities d_k, d'_k are non-negative integers which satisfy the conditions

$$\sum_{k} d_{k} = d(\nu) = \sum_{m=1}^{\infty} \tau(\nu - m(\varepsilon_{1} - \varepsilon_{2})), \quad \sum_{k} d'_{k} = d'(\nu) = \sum_{m=1}^{\infty} \tau(\nu - m(\varepsilon_{1} + \varepsilon_{2}))$$

(in particular, only finitely many multiplicities are non-zero and thus the above product is finite). Now the standard reasoning based on a use of Jantzen filtration gives $d_k = \tau(\nu - k(\varepsilon_1 - \varepsilon_2))$ and $d'_k = \tau(\nu - k(\varepsilon_1 + \varepsilon_2))$. Finally, up to a non-zero scalar, one has

$$\det S_{\nu} = \prod_{k=1}^{\infty} (h_2 - h_1 + k - 1)^{\tau(\nu - k(\varepsilon_1 - \varepsilon_2))} (h_2 + h_1 - k - 1)^{\tau(\nu - k(\varepsilon_1 + \varepsilon_2))} h_1^{2\sum_{m=1}^{\infty} (-1)^{m+1} \tau(\nu - m\varepsilon_2)} (h_2 - 1)^{2\sum_{m=1}^{\infty} (-1)^{m+1} \tau(\nu - m\varepsilon_1)}.$$

6. On the Jantzen filtration of a generic reducible Verma module.

The notion of Jantzen filtration on a Verma module was introduced in [Ja] for semisimple Lie algebras. It can be easily extended to superalgebra case. One has to take into account however that the vector ρ is no longer "regular" in a sense that hypersurfaces det $S_{\nu} = 0$ contain straight lines parallel to ρ so that in the construction of the Jantzen filtration one should use a/any regular vector $\rho' \in \mathfrak{h}^*$ instead of ρ — see [G3], 7.1 for details.

6.1. Retain notation of 2.4. The Jantzen filtration on $M(\lambda)$ is a decreasing filtration with the following properties:

$$\mathcal{F}^{0}(M(\lambda)) = M(\lambda), \quad \mathcal{F}^{1}(M(\lambda)) = \overline{M}(\lambda), \quad \bigcap_{r=0}^{\infty} \mathcal{F}^{r}(M(\lambda)) = 0,$$

(3)
$$d_{\nu}(\lambda) = \sum_{r \ge 1} \dim \mathcal{F}^{r}(M(\lambda))_{\lambda - \nu},$$

where $d_{\nu}(\lambda)$ is the order of zero of the polynomial det S_{ν} at the point λ (if det $S_{\nu} = \prod p_i^{r_i}$ where p_i are irreducible then $d_{\nu}(\lambda) = \sum_{i:p_i(\lambda)=0} r_i$). The formula (3) is proven in [Ja] and is called "sum fomula".

For $M(\lambda)$ being simple one has $\mathcal{F}^1(M(\lambda)) = 0$. For basic classical (except $\mathfrak{psl}(2|2)$) or Q-type Lie superalgebras the Jantzen filtration has length two, i.e. $\mathcal{F}^2(M(\lambda)) = 0$, if $M(\lambda)$ is a "generic" reducible Verma module. More precisely, $\mathcal{F}^2(M(\lambda)) = 0$ if λ lies on exactly one of irreducible components of a hypersurface det $S_{\nu} = 0$. Remarkably, this is far from being true in our case. We demonstrate this phenomenon on some examples below.

Set $\mathfrak{g} := \mathfrak{po}(0|2n)$. In the examples below we assume that

(4) λ is a generic point of the hyperplane $h_{\alpha} = k$,

where $h_{\alpha} = k$ is an irreducible component of a hypersurface det $S_{\nu} = 0$. For n > 2 one has k = 0 and genericity means that $h_{\beta}(\lambda) \neq 0$ for $\beta \in \Delta^+, \beta \neq \alpha$.

Denote by v_{λ} the highest weight vector of $M(\lambda)$.

6.2. The algebra $\mathfrak{g} = \mathfrak{po}(0|4)$. If dim $\mathfrak{g}_{\alpha} = 1$ (i.e., $\alpha = \varepsilon_1 \pm \varepsilon_2$) and λ satisfies (4) one can easily deduce from the sum formula (3) that $\mathcal{F}^2(M(\lambda)) = 0$.

6.2.1. The case $\alpha := \varepsilon_2$. Since ε_2 is simple, one has $S_{\varepsilon_2} = D_{\varepsilon_2}$ (see 5.2 for the explicit formula). One has dim $\mathcal{U}(\mathfrak{n}^-)_{-2\varepsilon_2} = 1$ and the Shapovalov matrix $S_{2\varepsilon_2}$ is equal to h_1^2 .

Let λ satisfy (4); since $h_{\alpha} = h_1$ one has $h_1(\lambda) = 0$. Set $f_{\varepsilon_2} := \xi_1 \eta_1 \eta_2$. If $h_{\emptyset}(\lambda) \neq 0$ the vector $f_{\varepsilon_2} v_{\lambda}$ lies in $\mathcal{F}^2(M(\lambda))$. Now using the "genericity" of λ one can deduce from the

sum formula (3) that $f_{\varepsilon_2}v_{\lambda}$ generates $\mathcal{F}^1(M(\lambda)) = \mathcal{F}^2(M(\lambda))$ and that $\mathcal{F}^3(M(\lambda)) = 0$. Note that a Jordan-Hölder series of $M(\lambda)$ has length two.

If $h_{\emptyset}(\lambda) = 0$ the term $\mathcal{F}^1(M(\lambda))$ is generated by $M(\lambda)_{\lambda-\alpha}$ ($\mathcal{F}^1(M(\lambda))$ is isomorphic to the sum of two quotients of $M(\lambda - \alpha)$) and $\mathcal{F}^2(M(\lambda)) \cong V(\lambda - 2\alpha)$; one has $\mathcal{F}^3(M(\lambda)) = 0$ as before.

Hence in a generic point of the hyperplane $h_1 = 0$ the Jantzen filtration has length three and $\mathcal{F}^1(M(\lambda)) = \mathcal{F}^2(M(\lambda))$ iff $h_{\emptyset}(\lambda) = 0$.

6.3. The algebra $\mathfrak{g} = \mathfrak{po}(0|2n), n > 2$.

6.3.1. Claim. Let α be a simple even root and λ be such that $h_{\alpha}(\lambda) = 0$. Then the Jantzen filtration of $M(\lambda)$ is infinite.

Proof. Fix any homogeneous (with respect to the Z-grading) bases in \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$. The matrix $S_{\alpha} = D_{\alpha}$ written in these bases has a column with only non-zero entry: this column corresponds to $f_{\alpha} \in \mathfrak{g}_{-\alpha}$ having the maximal degree and the non-zero entry corresponds to $e_{\alpha} \in \mathfrak{g}_{\alpha}$ having the minimal degree; the non-zero entry is equal to h_{α} . As a consequence, the matrix $S_{k\alpha}$ also has a column with only non-zero entry: this column corresponds to f_{α}^{k} and the entry is h_{α}^{k} . This gives $f_{\alpha}^{k}v_{\lambda} \in \mathcal{F}^{k}(M(\lambda))$. Hence the Jantzen filtration is infinite.

6.3.2. Notice that a submodule generated by $f^k_{\alpha}v_{\lambda}$ is isomorphic to $M(\lambda - k\alpha)$; denote this submodule by M_k . Clearly, $M_k \subset \mathcal{F}^k(M(\lambda))$.

If dim $\mathfrak{g}_{\alpha} = 1$, the sum formula (3) implies that $\mathcal{F}^k(M(\lambda)) = M_k$ for λ satisfying (4).

If dim $\mathfrak{g}_{\alpha} > 1$ one has $\mathcal{F}^{k}(M(\lambda)) \neq M_{k}$ for k = 1 or for k = 2, since the sum formula gives $\sum_{r>1} \dim \mathcal{F}^{r}(M(\lambda))_{\lambda-\alpha} = \dim \mathfrak{g}_{\alpha}$.

For example, let α be a simple even root and dim $\mathfrak{g}_{\alpha} = 2$. Then

$$S_{\alpha} = \begin{pmatrix} h' & \mid & h_{\alpha} \\ -- & - & -- \\ h_{\alpha} & \mid & 0 \end{pmatrix}$$

for some $h' \in \mathfrak{h}_{2n-6}^*$. If $h_{\alpha}(\lambda) = 0$ and $h' \neq 0$ one has $f_{\alpha}v_{\lambda} \in \mathcal{F}^2(M(\lambda))$ that is $M_1 \subset \mathcal{F}^2(M(\lambda))$. However, a natural guess that $M_1 \subset \mathcal{F}^{\dim \mathfrak{g}_{\alpha}}(M(\lambda))$ is wrong. The example $\dim \mathfrak{g}_{\alpha} = 4$ shows that in this case $\mathcal{F}^1(M(\lambda))_{\lambda-\alpha} = \mathcal{F}^2(M(\lambda))_{\lambda-\alpha}$ is a two dimensional subspace and so $\mathcal{F}^3(M(\lambda))_{\lambda-\alpha} = 0$; in particular, M_1 lies in $\mathcal{F}^2(M(\lambda))$ and does not lie in $\mathcal{F}^3(M(\lambda))$.

6.4. Element T. The enveloping algebra of $\mathfrak{g} := \mathfrak{po}(0|2n)$ contains a special even element T which commutes with the even elements of \mathfrak{g} and anticommutes with the odd one, see [G1]. Recall that $U(\mathfrak{g})$ admits the canonical filtration and that the associated graded algebra is $S(\mathfrak{g})$. The algebra $S(\mathfrak{g})$ contains $\Lambda \mathfrak{g}_{\overline{1}}$. It turns out that the image of T in

 $S(\mathfrak{g})$ belongs to $\Lambda^{\text{top}}\mathfrak{g}_{\overline{1}}$. These conditions (commutational relations and $\text{gr } T \in \Lambda^{\text{top}}\mathfrak{g}_{\overline{1}}$) determines T up to a non-zero scalar. If \mathfrak{g} has a \mathbb{Z} -grading then the degree of T is equal to the degree of $\Lambda^{\text{top}}\mathfrak{g}_{\overline{1}}$.

The element T acts on a Verma module in the following way: it acts by $HC(T)(\lambda)$ id on the \mathbb{Z}_2 -homogeneous component containing a highest weight vector and by $-HC(T)(\lambda)$ id on another \mathbb{Z}_2 -homogeneous component.

6.4.1. Take n > 2. By Corollary 3.2 (ii), $M(\lambda)$ contains a primitive vector of weight $\lambda - \alpha$ if $h_{\alpha}(\lambda) = 0$. One can deduce from this statement that the polynomial HC(T) is divisible by h_{α} for $\alpha \in \Delta_{1}^{+}$.

Conjecture: $\operatorname{HC}(T) = \prod_{\alpha \in \Delta_1^+} h_{\alpha}^{\dim \mathfrak{g}_{\alpha}}$ up to a non-zero scalar for n > 2.

6.4.2. Claim. For $\mathfrak{g} := \mathfrak{po}(0|4)$ one has $\operatorname{HC}(T) = h_1^2(h_2 - 1)^2$ up to a non-zero scalar.

Proof. First, let us show that $t := \operatorname{HC}(T)$ is divisible by h_1^2 . Set $\alpha := \varepsilon_2$ and let f_1, f_2 (resp., e_1, e_2) be a basis of $\mathfrak{g}_{-\alpha_2}$ (resp., \mathfrak{g}_{α}). Write $T = t + \sum_{i,j=1,2} f_i \phi_{ij} e_j + \sum y_r x_r$, where $y_r \in U(\mathfrak{g}), x_r \in \mathfrak{n}_{\mu(r)}^+$ for some $\mu(r) \neq -\alpha_2$. Let v be a primitive vector. Then Tv = tv and $Tf_rv = -f_rTv$ and

$$Tf_r v = tf_r v + \sum_{i,j=1,2} f_i \phi_{ij} e_j f_r v = tf_r v + \sum_{i=1,2} f_i (\Phi S)_{ir} v$$

where $\Phi = (\phi_{ij})$ and $S := S_{\alpha}$ is the Shapovalov matrix written with respect to the above base. Putting $f_1 := \eta_2, f_2 := \xi_1 \eta_1 \eta_2$ we get

$$tf_1 = f_1(t - \frac{\partial t}{\partial h_2}) - f_2 \frac{\partial t}{\partial h_{12}}, \quad tf_2 = f_2(t - \frac{\partial t}{\partial h_2}).$$

Hence

$$\Phi S = \begin{pmatrix} -2t + \frac{\partial t}{\partial h_2} & 0\\ \frac{\partial t}{\partial h_{12}} & -2t + \frac{\partial t}{\partial h_2} \end{pmatrix}$$

Now substituting $S = S_{\alpha}$ (see 5.2) we conclude that t is divisible by h_1^2 (this reflects the fact that for λ being a generic point of the hyperplane $h_1 = 0$ one has $\mathcal{F}^2(M(\lambda))_{\lambda-\alpha} \neq 0$).

It remains to show that t is divisible by $(h_2 - 1)^2$. Take λ such that $\lambda(h_1 - h_2) = k \in \mathbb{Z}_{\geq 0}$. Then $M(\lambda)$ has a primitive vector of the weight $\lambda - (k+1)(\varepsilon_1 - \varepsilon_2)$ and so $t(\lambda) = t(\lambda - (k+1)(\varepsilon_1 - \varepsilon_2))$. As a consequence, t is stable under the involution of the algebra $S(\mathfrak{h})$ which acts by id on $\mathfrak{h}_{-2} + \mathfrak{h}_2$ and acts on \mathfrak{h}_0 by mapping h_1 to $h_2 - 1$. Since t is divisible by h_1^2 , t is divisible by $(h_2 - 1)^2$ as well. The claim follows.

References

- [G1] M. Gorelik, On the ghost centre of Lie superalgebras, Les Annales de l'institut Fourier, t. 50 (2000), p.1745–1764
- [G2] M. Gorelik, Kac construction of the centre $\mathcal{Z}(\mathfrak{g})$, Journal of non-linear Math. Phys., **11** (2004) p. 325–349.

- [G3] M. Gorelik, Shapovalov determinants of Q-type Lie superalgebras, preprint (2004).
- [GL] P. Grozman, D. Leites, The Shapovalov determinant for the Poisson superalgebras, *Journal of non-linear Math. Phys.*, 8 (2001), p. 220-228.
- [Ja] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math., 750 (1979).
- [K] V. G. Kac, Lie superalgebras, Advances in Math., 26 (1977), p. 8–96.
- [KKK] V. G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, *Proc. Nat. Acad. Sci.*, **81** (1984), no.2, Phys, Sci., p. 645–647.
- [KK] V. G. Kac, D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, *Advances in Math.*, **34** (1979), p. 97-108.
- [PS] I. Penkov, V. Serganova, Generic irreducible representations of finite-dimensional Lie superalgebras, International Journal of Math., 5 (1994), p. 389–419.
- [Sh] N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, *Functional Anal. Appl.*, 6 (1972), p. 307–312 (in Russian).

DEPT. OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL, email: maria.gorelik@weizmann.ac.il

DEPT. OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720 email:serganov@math.berkeley.edu