
ON REPRESENTATIONS OF THE LIE SUPERALGEBRA P (n)

VERA SERGANOVA

Abstract. We introduce a new way to study representations of the Lie superal-
gebra p (n). Since the center of the universal enveloping algebra U acts trivially
on all irreducible representations, we suggest to study the quotient algebra Ū by
the radical of U . We show that Ū has a large center which separates typical finite-
dimensional irreducible representations. We give a description of Ū factored by a
generic central character. Using this description we obtain character formulae of
generic (infinite-dimensional) irreducible representations. We also describe some
geometric properties of the supervariety Spec Gr Ū in the coadjoint representation.

1. Introduction

In this paper we study representations of the classical Lie superalgebra p (n) in-
troduced in [3]. Let us recall the definitions. Denote by p̃ (n) the Lie superalgebra
of all endomorphisms of (n|n)-dimensional vector superspace which preserve a fixed
odd non-degenerate symmetric form. The Lie superalgebra p (n) is the commutator
of p̃ (n). It is simple when n ≥ 2.

The main difficulty in representation theory of p̃ (n) and p (n) is that the center of
the universal enveloping superalgebra of p̃ (n) is trivial. The center of the universal
enveloping of p (n) is non-trivial see [1], but it acts by the same central character on
all irreducible representations. Therefore the powerful technique of central characters
seems not applicable. We show that it still can work after some reduction.

The universal enveloping algebra U of p̃ (n) has a non-trivial radical I as was shown
in [4]. Let Ū be the quotient algebra U/I . We suggest to study the representations of
Ū instead of U . Using this approach we do not lose any information about irreducible
representations but in fact gain some additional information. Our main result is that
Ū has a non-trivial center Z, which separates typical finite-dimensional irreducible
representations. In Theorem 4.8 below we describe Z precisely. Furthermore we show
that for a generic central character χ : Z → C the algebra Ū/Ū Kerχ is isomorphic
to the matrix algebra over U (g0) /U (g0)Kerχ0 for a certain central character χ0

of U (g0). This allows to write character formulae for a generic irreducible weight
representation.

The same method is applicable to p (n).
In the last section we suggest some geometric motivation of our construction. We

realize the graded algebra Gr Ū as the algebra of functions on a Poisson subvariety
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X in the coadjoint representation g∗. Let Q be the closure of the union of coadjoint
orbits of all even elements. It is a specific feature of supergeometry that Q does
not coincide with g∗ but is a closed subvariety with singularities. We believe that
X coincides with Q, however we are able to prove only that Q is an irreducible
component of X .

I would like to thank M. Gorelik and I. Musson for very useful discussions and
remarks. I am also thankful to M. Duflo and I. Zakharevich for corrections to pre-
liminary version of the paper.

2. Preliminaries

Let g be the Lie superalgebra p̃ (n) (n ≥ 2) over C, U be its universal enveloping
algebra. Recall that g0

∼= gl (n), and g has a Z-grading g = g−1 ⊕ g0 ⊕ g1, where g−1

is isomorphic to Λ2E∗ and g1 is isomorphic to S2E as g0-module, here E stands for
the standard module over g0. Let g′

0 = [g0, g0] ∼= sl (n). The grading of g induces the
grading of U in the natural way. Thus

U =

n(n+1)/2⊕

i=−n(n−1)/2

Ui.

The standard matrix realization of p̃ (n) is given by all block matrices
(

a b
c −at

)

where a is an arbitrary n × n-matrix, at denotes the transposed matrix, b is a sym-
metric n × n-matrix and c is a skew-symmetric n × n-matrix.

We fix a Cartan subalgebra h in g, which coincides with Cartan subalgebra of g0

and identify h with h∗ by means of the g0-invariant form (A1, A2) = trA1A2 on g0. If
ε1, . . . , εn is the standard orthogonal basis in h, then the roots of g are of the following
form:

Roots of g0 : εi − εj , i 6= j, 1 ≤ i, j ≤ n
Roots of g−1 : − εi − εj, 1 ≤ i < j ≤ n
Roots of g1 : εi + εj, 1 ≤ i ≤ j ≤ n
Each root has multiplicity one. For each root α we fix an element Xα from the root

space such that [Xα, X−α] = Hα with (Hα, Hα) = 2. If −α is not a root we choose
Xα being an arbitrary non-zero element of the root space. For µ ∈ h∗ we denote by
µi its coordinate in the standard basis, i.e. µ =

∑n
i=1 µiεi.

We also denote by (·, ·) the bilinear symmetric form on h∗ induced by the form on
h. One can check that (α, β) = α (Hβ) for any two roots α, β of g0.

We choose a Borel subalgebra b ⊃ h such that the positive roots are εi − εj for
i < j and all roots of g1. Let n = [b, b]. As was shown in [3], all irreducible finite
dimensional g-modules are modules of highest weight. An irreducible module with
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highest weight µ is finite-dimensional if and only if µi − µj is a non-negative integer
for all i < j.

Finally let g′ = p (n) = [g, g], h′ = h ∩ g′. One can check that g′ = g−1 ⊕ g′
0 ⊕ g1.

Let U ′ denote the universal enveloping of g′.

3. Radical of U

In this section we will show that U has a non-zero Jacobson radical and give
some description of this radical. This radical was constructed in [4]. We put d =
n (n − 1) /2. Note that d = dimg−1.

Let M0
µ denote Verma module over g0 with highest weight µ and Mµ be Verma

module over g. One can verify easily that

(3.1) Mµ = Indg
g0⊕g1

M0
µ,

assuming g1M
0
µ = 0.

Let v be a highest vector of Mµ and X = Πi<jXεi+εj
, Y = Πi<jX−εi−εj

. Finally
let ∆ (µ) = Πi<j (µi − µj + j − i − 1).

Lemma 3.1. XY v = ∆ (µ) v.

Proof. We order the roots εi + εj in the following way

εi + εj < εp + εq iff i < p or i = p and j < q.

According to this order we index our roots α1, . . . , αd.
Then whenever α < β < γ we have

[Xα, X−β ] ∈ b0,

[[Xα, X−β ] , X−γ ] is either zero or X−δ , with γ < δ.

Now let wk = X−αk
. . . X−αd

v, wd+1 = v. Using the above relations one verifies
that

Xαk
wk = (µ − αk+1 − · · · − αd, Hαk

)wk+1.

If αk = εi + εj, then (µ − αk+1 − · · · − αd, Hαk
) = µi − µj + j − i− 1. Repeating this

argument one obtains Xw1 = ∆ (µ) wd+1. �

Let h∗
0 = {µ ∈ h∗ | µi − µj /∈ Z, i 6= j}. Clearly h∗

0 is a Zariski dense set in h∗.

Lemma 3.2. If µ ∈ h∗
0 then Mµ is irreducible.

Proof. If we put deg v = 0, then Mµ inherits Z-grading from U , such that Mµ =
(Mµ)0 + · · · + (Mµ)−d. Note that (Mµ)−d = Y M0

µ = M0
µ+σ, where σ is the sum of

all roots of g−1.The highest vector of M0
µ+σ is Y v. By (3.1) Mµ is free over U (g−1).

Therefore every non-zero submodule N of Mµ has a nontrivial intersection with M0
µ+σ.

The conditions on µ ensure that M0
µ+σ is irreducible. Thus, N must contain Y v,

and therefore XY v = ∆ (µ) v. As µ ∈ h∗
0, ∆ (µ) 6= 0, we have v ∈ N and hence

N = Mµ. �
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Lemma 3.3. Let Pµ = Indg
g0

M0
µ .

(a) If µ ∈ h∗
0, then Pµ has finite length with irreducible subquotients Mµ+γ , where

γ runs over sums of non-repeating roots of g1. Note that the length s of Pµ is equal
to 2n(n+1)/2.

(b)
⊕

µ∈h∗
0
Pµ is a faithful U -module.

Proof. To prove (a) use

Pµ = Indg
g0⊕g1

(
Indg0⊕g1

g0
M0

µ

)
.

A filtration of Indg0⊕g1

g0
M0

µ with g0-irreducible quotients M0
µ+γ induces the filtration

on Pµ with irreducible quotients Mµ+γ .
To show (b) recall that

⊕
µ∈h∗0

M0
µ is a faithful U (g0)-module. Therefore

⊕
µ∈h∗0

Pµ =

Indg
g0

(
⊕µ∈h∗

0
M0

µ

)
is a faithful U -module. �

The following theorem is proved in [4]. If M is a module over an associative algebra
A, then AnnA M denotes the annihilator of M in A.

Theorem 3.4. The ideal I = ∩µ∈hµ∈h
AnnU Mµ = ∩µ∈h∗

0
AnnU Mµ coincides with the

radical of U .

Proof. The assertion ∩µ∈h∗ AnnU Mµ = ∩µ∈h∗
0
AnnU Mµ follows from Zariski density

of h∗
0. By Lemma 3.2 Mµ is irreducible if µ ∈ h∗

0, and therefore rad U ⊂ I . To show
that I ⊂ rad U it suffices to prove that I is nilpotent. Note that Is (Pµ) = 0 for all
µ ∈ h∗

0. Since ⊕µ∈h∗
0
Pµ is faithful we obtain Is = 0. �

Corollary 3.5. Let Ū = U/I . Then the Z-grading on U induces the Z-grading on
Ū such that Ū = Ū−d ⊕ · · · ⊕ Ūd. The natural maps U (g0 ⊕ g−1) → Ū and g → Ū
are injective. Finally ∩µ∈h∗

0
Ann

U
Mµ = {0}.

The following theorem can be proven in the same manner as Theorem 3.4.

Theorem 3.6. The ideal I ′ = ∩µ∈(h′)∗ AnnU ′ Mµ coincides with the radical of U ′.

4. The center of Ū

In this section we will describe the center Z of Ū . As follows from Corollary 3.5
U (h) is a subalgebra of Ū . Theorem 3.4 implies that I annihilates highest vectors
of all Verma modules. Therefore I ⊂ Un+. Hence the standard Harish-Chandra
projection h : U → U (h) with the kernel n−U + Un+ induces the map Ū → S (h).
Thus, one can define the Harish-Chandra homomorphism h : Z → U (h) = S (h). We
identify S (h) with polynomial algebra on h∗. As in the usual case for any z ∈ Z

(4.1) z|Mµ = h (z) (µ) Id .

Therefore the last statement of Corollary 3.5 implies that h is injective. We will
describe h (Z).
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Let W be the Weyl group of g0, note that W is isomorphic to Sn. Define a W -
action on h∗ by µw = w (µ + ρ0) − ρ0, where ρ0 is the half sum of even positive

roots. Denote by S (h)
W

the subring of W -invariant polynomials on h∗. Let Θ (µ) =

Πi6=j ((µ + ρ0, εi − εj) − 1). Note that Θ ∈ S (h)W .

Lemma 4.1. h (Z) ⊂ S (h)
W

.

Proof. Let d = {µ ∈ h∗ | µi − µj ∈ Z≥0, i < j}. Then d is a Zariski dense set in h∗.
Furthermore for any w ∈ W

Homg (Mµw , Mµ) = Homg0

(
M0

µw , M0
µ

)
= C.

Therefore every element z ∈ Z acts by the same scalar on Mµw and on Mµ. By (4.1)
every p ∈ h (Z) satisfies p (µw) = p (µ) for all µ ∈ d. Since d is Zariski dense, this
implies that p (µw) = p (µ) for all µ ∈ h∗. �

Lemma 4.2. Let µ ∈ h∗ be such that µn−1 = µn and p ∈ h (Z). Then p (µ + t (εn−1 + εn)) =
p (µ) for any t ∈ C.

Proof. Let v be a highest vector of Verma module Mµ, u = Xεn−εn−1
v and w =

X−εn−εn−1
v. An easy calculation shows that u is n+-invariant, and n+w = Cu.

Therefore N = Ūu is a proper submodule in Mµ and Homg

(
Mµ−εn−1−εn , Mµ/N

)
6= 0.

By (4.1) this implies p (µ) = p (µ − εn−1 − εn). Applying this relation several times
we obtain p (µ) = p (µ + t (εn−1 + εn)) for all t ∈ Z, which by Zariski density of Z in
C implies the same relation for all t ∈ C. �

Corollary 4.3. Let (µ + ρ0, εi − εj) = 1 and p ∈ h (Z). Then p (µ) = p (µ + t (εi + εj))
for all t ∈ C.

Lemma 4.4. h (Z) ⊂ ΘS (h)W + C.

Proof. Let
li,j = {µ ∈ h∗| (µ + ρ0, εi − εj) = 1} .

We want to show that if p ∈ h (Z), then p is constant on ∪i6=j li,j. Since p is W -
invariant, it suffices to show that p is constant on one hyperplane li,j, for example
on l1,2. If n = 2, the statement is trivial. Let µ ∈ l1,2, i.e. µ1 = µ2. Put λ =
µ + (µ3 − µ1) (ε1 + ε2). By Corollary 4.3 p (µ) = p (λ). Note that λ ∈ l2,3. Put
ν = λ + (µ1 − µ3 + 1) (ε2 + ε3). Then p (µ) = p (λ) = p (ν). Let w = (132) ∈ W .
Then νw = µ+2ε3. Thus we obtain the relation p (µ) = p (µ + 2ε3). In the same way
as in the proof of lemma 5 we can get that p (µ) = p (µ + tε3) for all t ∈ C. Using
W -invariance of p we obtain that p (µ) = p (µ + tεi) for all t ∈ C and i = 3, . . . , n.
This implies that p is constant on l1,2 and therefore p is constant on ∪i6=j li,j. �

For any x ∈ U denote by x0 the image of x under the projection onto U (g0) with the
kernel g1U+Ug−1. Recall that U = U (g1)⊗U (g0)⊗U (g−1) and U (g1) = S (g1) ⊂ U .

Lemma 4.5.
(
Y Sd (g1)

)
0
6= 0.
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Proof. We will show that (Y X)0 6= 0. Consider the Verma module Mµ with a highest
vector v. Then (Y X)0 Y v = Y XY v = ∆ (µ) Y v by Lemma 3.1. Therefore (Y X)0 6=
0. �

Let Uk be the k-th term of the natural filtration of U . Lemma 4.5 enables us to
define a non-trivial adg′

0
-invariant map

ϕ : Sd (g1) → Ud (g0)

by
ϕ (x) = (Y x)0 .

Let {Xi} be a basis in some adg0
-invariant subspace of Sd (g1) complementary to

Kerϕ. Then {(Y Xi)0} is a linearly independent set in Ud (g0) and could be extended
to some basis of Ud (g0). Recall that Ud (g0) ∼= S≤d (g0) as adg0

module and it admits
a non-degenerate adg0

-invariant bilinear symmetric form B. Use the notation (Y Xi)
′
0

for the vectors of the dual basis with respect to B. Let

T = ΣXi (Y Xi)
′
0 .

Then T is adg′
0

invariant and

(4.2) (Y T )0 = Σ
(
Y Xi (Y Xi)

′
0

)
0

= Σ(Y Xi)0 (Y Xi)
′
0 6= 0.

Lemma 4.6. (a) Let Y ad = Πi<j adX−εi−εj
and S = Y ad (T ), and S̄ be its image in

Ū . Then S̄ ∈ Z and h
(
S̄
)

is proportional to Θ.

(b) Let z ∈ Z (U (g0)). Put Sz = Y ad (zT ), and let S̄z be its image in Ū . Then
S̄z ∈ Z and h

(
S̄z

)
= h

(
S̄
)
h (z).

Proof. (a) First of all S̄ 6= 0. Indeed, if v is a highest vector of M (µ) then

S̄Y v = SY v = Y ad (T )Y v = Y TY v = (Y T )0 Y v.

Since (Y T )0 6= 0, (Y T )0 Y v 6= 0 for some µ, and therefore S̄ 6= 0.
Note that T̄ ∈ Ūd, hence g1T̄ = T̄g1 = 0, and adg′0

T̄ = 0. Thus, T̄ is adb-invariant

vector of weight −σ. Let V be adg-submodule of Ū generated by T̄ . Since S̄ 6= 0,
V ∼= Indg

g0⊕g1
CT̄ and S̄ generates the trivial adg-submodule of V . Thus, S̄ ∈ Z.

To find h
(
S̄
)

note that S̄ acts by zero on the trivial g-module, hence h
(
S̄
)
(0) = 0.

On the other hand the degree of the polynomial h
(
S̄
)

is not greater than 2d as

S̄ ∈ Ū2d. Therefore, by Lemma 4.4, h
(
S̄
)

must be proportional to Θ.

(b) Arguments similar to (a) show that S̄z ∈ Z. Finally, if v is a highest vector of
Mµ, then

(4.3) h
(
S̄z

)
(µ) v = S̄zv = Y ad (zT )v = zTY v = zY ad (T ) v = zSv.

Note that zSv = (h (z)) (µ) Sv. Therefore h
(
S̄z

)
= h

(
S̄
)
h (z). �

Corollary 4.7. C + ΘS (h)W ⊂ h (Z).
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Lemma 4.4 and Corollary 4.7 immediately imply

Theorem 4.8. h (Z) = C + ΘS (h)W .

Let Ū ′ = U ′/I ′, Z ′ be the center of Ū ′ and h : Z ′ → S (h′)∗ be the Harish-Chandra
homomorphism. One can prove the following theorem by repeating the arguments of
this section.

Theorem 4.9. h (Z ′) = C + ΘS (h′)W .

5. The category of Ū-modules

Let µ ∈ h∗. Define χµ : Z → C by the formula χµ (z) = h (z) (µ) for all z ∈ Z.
We call µ typical if Θ (µ) 6= 0. Otherwise we call µ atypical. The following statement
follows immediately from Theorem 4.8.

Lemma 5.1. Let µ, ν ∈ h∗. Then χµ = χν iff either both µ and ν are atypical or µ
and ν are both typical and µ = νw for some w ∈ W

Define Ūµ = Ū/Ū Kerχµ. Let U0
µ = U (g0) /U (g0) Kerχ0

µ, where χ0
µ : Z (U (g0)) →

C is defined using the Harish-Chandra projection restriction to Z (U (g0)). By Ūµ −
mod (respectively U0

µ − mod ) we denote the category of all left Ūµ-modules (resp.

U0
µ-modules). In the similar way one defines Ū ′

µ for µ ∈ (h′)
∗
.

We will prove the following

Theorem 5.2. If µ ∈ h∗ is typical then the categories Ūµ − mod and U0
µ − mod

are equivalent.

Let us introduce the following notations. Put z0 = diag (1n,−1n) ∈ Z (g0). We
assume now that µ is typical and fixed. If M is a g-module we put

Mg1 = {m ∈ M | g1m = 0}

M0 = {m ∈ M | z0m = µ (z0)m} .

Lemma 5.3. If M is an Ūµ-module then
(a) Mg1 is an U0

µ-module;
(b) Mg1 = M0;
(c) z0 acts semi-simply on any Ūµ-module;
(d) The functor Inv : Ūµ − mod → U0

µ − mod , defined by Inv M = M0 = Mg1

is faithful and exact.

Proof. The first statement follows from the formula S̄zm = zS̄m for any m ∈ Mg1 ,
z ∈ Z (U (g0)). Since S̄m = χµ

(
S̄
)
m 6= 0, we get

zm =
S̄zm

χµ

(
S̄
) = χ0

µ (z)m.

By (a) z0m = µ (z0)m for any m ∈ Mg1 , and therefore Mg1 ⊆ M0. Let m ∈ M0.
Then M ′ = U (g1)m is a z0-invariant finite-dimensional subspace of M with z0 weight
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decomposition M ′ = ⊕i≥0M
′
µ(z0)+i. In particular M ′

µ(z0) = Cm. Since (M ′)g1 6= 0,

and (M ′)g1 ⊆ M0, we obtain m ∈ (M ′)g1 and M ′ = Cm. Therefore Mg1 = M0.
Faithfulness of Inv follows from the fact that U (g1) is isomorphic to finite-dimensional

Grassmann algebra.
To prove (c) let N be a maximal submodule of M on which z0 acts semi-simply.

By (b) Ng1 = Mg1 . Assume that N 6= M . Then (M/N)g1 6= 0. Let M ′ ⊂ M be
the preimage of (M/N)g1 under the natural projection M → M/N . One can find
v ∈ M ′\N such that z0v = µ (z0) v + w and z0w = µ (z0)w. By (b) w ∈ Mg1 .
Therefore yw = 0 and yz0v = µ (z0) yv for any y ∈ g1. But z0yv = yz0v + yv, and
therefore z0yv = (µ (z0) + 1) yv. On the other hand, there exist y1, . . . , yk ∈ g1 such
that y1 . . . ykyv ∈ Mg1 = M0. Therefore z0yv = (µ (z0) − k) yv. Hence yv = 0 for any
y ∈ g1, but that implies z0v = µ (z0) v. Therefore v ∈ N . Contradiction.

Exactness is a direct corollary of the identity InvM = M0. �

Let Ū+ denote the image of U (g0 ⊕ g1) in Ū under the natural projection. Since
U (g0) is a subalgebra of Ū it is possible to define a Ū+-module structure on every
g0-module by putting g1N = 0.

Let IndN = Ū ⊗Ū+ N .

Lemma 5.4. Let N be a U0
µ-module. Then

(a) IndN is Ūµ-module.
(b) IndN ∼= U (g−1) ⊗C N as g0-module.
(c) The functor Ind: U0

µ − mod → Ūµ − mod is exact and faithful.
(d) Inv (IndN) ∼= N .

Proof. Since IndN = ŪN , it suffices to check that zv = χµ (z) v for every z ∈ Z and
v ∈ N . Define the projection h0 : Ū0 → U (g0) with the kernel Ū0 ∩ Ūg1. One can
easily verify that h0 (Z) ⊂ Z (U (g0)), zv = h0 (z) v and χµ (z) = χ0

µ (h0 (z)). Now
(a) follows immediately.

To prove (b) recall that U (g−1) is a subalgebra of Ū and IndN is free over U (g−1).
(c) follows from (b).
To prove (d) use that IndN = N ⊕ g−1U (g−1) IndN . Let

N ′ := Inv (IndN) ∩ (g−1 IndN) .

It suffices to show that N ′ = {0}. Indeed, let M ′ ⊂ IndN be a submodule generated
by N ′. Then M ′ ⊆ g−1 IndN , and therefore TM ′ = 0. But then S̄M ′ = 0. Since µ
is typical, S̄ acts on M ′ by a non-zero constant. Hence M ′ = {0} and N ′ = {0}. �

Lemma 5.5. The functors Inv: U0
µ − mod → Ūµ− mod and Ind : Ūµ− mod →

U0
µ − mod establish equivalence of categories.

Proof. By Lemma 5.4 (d) Inv (IndN) ∼= N . Therefore it suffices to show that
Ind (Inv M) ∼= M . Since Inv (Ind (Inv M)) ∼= Inv M and Inv is faithful and exact, we
obtain Ind (InvM) ∼= M . �
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Note that Lemma 5.5 implies Theorem 5.2.

Remark 5.6. Note that in the same way one can prove that the category of right
Ūµ-modules and the category of right U0

µ+σ-modules are equivalent. The shift by σ
comes from rewriting formula (4.3) for right g-modules.

Theorem 5.7. For a typical µ ∈ h∗ the algebra Ūµ is isomorphic to the matrix
algebra U0

µ ⊗C EndC (U (g−1)).

Proof. We are using the following classical result (see [2]). Let A and B be g0-
modules. Denote by F (A, B) the subspace of HomC (A, B) on which the adjoint
action of g0 is locally finite. The natural homomorphism ρ0 : U0

µ → F
(
M0

µ, M0
µ

)
is

an isomorphism. We will show that the natural homomorphism ρ : Ūµ → F (Mµ, Mµ)
is also an isomorphism. First of all since Mµ = Ind M0

µ and M0
µ is faithful, Morita

equivalence of U0
µ and Ūµ implies that Mµ must be faithful. Thus ρ is injective.

To show the surjectivity of ρ consider F (Mµ, Mµ) as a left Ūµ-module. Then by
Theorem 5.2

F (Mµ, Mµ) = Ind (Inv F (Mµ, Mµ)) = IndF
(
Mµ, M0

µ

)
.

Note that F
(
Mµ, M0

µ

)
is a right Ūµ-module and therefore by Remark 5.6

F
(
Mµ, M0

µ

)
= Ind

(
Inv F

(
Mµ, M

0
µ

))
= IndF

(
M0

µ+σ, M0
µ

)
.

Thus, it suffices to check that F
(
M0

µ+σ , M0
µ

)
⊆ Imρ. Indeed, it follows from

F
(
M0

µ+σ , M0
µ

)
= F

(
M0

µ, M0
µ

)
ρ (T ) = ρ (U (g0)T ) .

Finally, the isomorphism of g0-modules Mµ
∼= M0

µ ⊗C U (g−1) implies

F (Mµ, Mµ) ∼= F
(
M0

µ, M0
µ

)
⊗C EndC (U (g−1)) ,

and that completes the proof of the theorem. �

Corollary 5.8. Let M0 be an irreducible U0
µ-module for some typical µ ∈ h∗. Then

M = Indg
g0⊕g1

M0 is an irreducible g-module. Moreover, if M0 is a semi-simple h-
module with finite weight multiplicities, then M is also h-semi-simple with finite
weight multiplicities and chM = chM0Πi6=j (1 + εe−εi−εj ).

Theorem 5.9. Let ν ∈ (h′)∗ and µ ∈ h∗ be such that µ|h′ = ν. Then the algebra Ū ′
ν

is isomorphic to Ūµ.

Proof. Let (U0
ν )

′
= U (g′

0) /U (g′
0)Kerχ0

ν. One can prove repeating the above argu-
ments that Ū ′

ν is isomorphic to (U0
ν )

′
⊗EndC (U (g−1)). Now the theorem follows from

the obvious isomorphism (U0
ν )

′ ∼= U0
µ. �
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6. Geometric realization of Gr Ū

As in the classical case, GrU ∼= S (g) is a supercommutative algebra with a Poisson
bracket. It can be considered as the algebra of polynomials on g∗. As I is a two-sided
ideal in U , Gr I is a Poisson ideal, and the quotient algebra Gr Ū = Gr U/Gr I is
also a supercommutative algebra with a Poisson bracket. Being a quotient algebra
of GrU , it can be considered as an algebra of functions on an appropriate closed
Poisson subvariety (or a subscheme) of g∗. The reader can find all necessary details
on supergeometry in [5] and [6]. Below we repeat only the principal notions.

Let V be a vector superspace. Then it is a supermanifold with the supercommuta-
tive ring of regular function O (V) = S (V∗). A Z2-graded ideal IM ⊂ O (V) defines
an affine supercheme M inside V . The supercommutative ring O (M) = O (V) /IM
is called the ring of regular functions on M. The ideal JM ⊂ O (M) generated by
all odd elements of O (M) defines the affine scheme M0 ⊂ V0 which is called the
underlying scheme of M. We say that M is an affine supervariety if M0 is an affine
variety, i.e. O (M0) does not have nilpotents.

Consider g∗ as a supermanifold with the coadjoint action of the supergroup G. Its
underlying manifold is g∗

0. Let ξ : G × g∗
0 → g∗ be the morphism of supermanifolds

induced by the action of G on g∗ and the canonical embedding g∗
0 ⊂ g∗. Let IQ =

Ker ξ∗ and Q be the closed subscheme of g∗ defined by the ideal IQ. Since the
underlying variety of Q coincides with g∗

0, Q is an affine supervariety. By analogy
with even situation one can say that Q is the closure of Gg∗

0. Note that IQ is adg-
invariant, hence {x, IQ} ⊂ IQ for all x ∈ g. Therefore IQ is a Poisson ideal in O (g∗)
and Q is a (singular) Poisson subvariety of g∗.

Let us describe the geometry of Q. Denote by R0 the open subset of all regular
elements of g∗

0.

Lemma 6.1. For x ∈ g∗
0, let gx be the Lie superalgebra of the stabilizer of x. Then

dim (gx ∩ g1) ≥ n. If x ∈ R0 then dim (gx ∩ g1) = n and gx ∩ g−1 = {0}. If x /∈ R0,
then dim (gx ∩ g1) > n and dim (gx ∩ g−1) > 0.

Proof. Although in our case the adjoint and coadjoint representations are not iso-
morphic, there is a convenient matrix realization of g∗. We identify g∗ with the space
of all matrices of the form

(6.1)

(
q s
u qt

)

where q is an arbitrary n × n-matrix, s is a skew-symmetric n × n matrix and u
is a symmetric n × n-matrix. The pairing between g and g∗ is given by the form
〈x, y〉 =str xy, and the action of g on g∗ is given by the supercommutator.

Let x =

(
q 0
0 qt

)
. Then

gx ∩ g−1 =
{
c ∈ g−1 | cq − qtc = 0

}
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and in the same way

gx ∩ g1 =
{
b ∈ g1 | qb − bqt = 0

}
.

Since b is symmetric and qb− bqt is skewsymmetric,

dimgx ∩ g1 ≥ dimg1 − dim g−1 = n.

That proves the first statement.
To check two other statements note that dim gx ∩ g−1 and dim gx ∩ g1 are constant

on the conjugacy class of q. Therefore it is sufficient to prove the statements for a
canonical Jordan form of q which is a straightforward calculation. �

Corollary 6.2. dim Q = (n2, n2 − n).

The next step is to construct “a resolution of singularities” of Q.
Let p = g0 + g1, P be the subgroup with the Lie superalgebra p, and K = G/P .

Note that P is the normalizer of g1 and therefore K is the supermanifold of all
Lie subalgebras of gAdG-conjugate to g1. Let G−1 be the supergroup with the Lie
superlalgebra g−1. Since G−1 is supercommutative, the exponential map defines
an isomorphism of algebraic supermanifolds G−1 and g−1. Since G−1 acts simply
transitively on K, K is isomorphic to g−1 as an algebraic supermanifold, and O (K) ∼=
S

(
g∗
−1

)
.

Let V be the vector bundle on K induced by the P -module (g/g1)
∗. A point of

V is a pair (g′
1, φ), where g

′

1 is a subalgebra AdG-conjugate to g1 and φ is a linear
functional on g annihilating g′

1. (Here points are in the sense of the “functor of
points” see [5]).

Define the map r : V → g∗ by putting r (g′
1, φ) = φ.

Note that g∗
−1 × g∗

0 is embedded in V as the fiber over the point (in usual sense)
[g1] ∈ G/P . Since the base K of the bundle V is identified with g−1, one can
identify V with g−1 × g∗

−1 × g∗
0 using the action of G−1. So a point v ∈ V is a triple

v = (c, d, y) ∈ g−1 × g∗
−1 × g∗

0, where c and d are skew-symmetric matrices with odd
entries and y is an arbitrary n×n-matrix with even entries. For any v ∈ V the image
r (v) ∈ g∗ can be calculated as
(6.2)

Ad∗
0

@

1n 0
c 1n

1

A

(
y d
0 yt

)
=

(
1n 0
c 1n

) (
y d
0 yt

) (
1n 0
−c 1n

)
=

(
y − dc d

cy − ytc − cdc yt + cd

)

Denote the open subset g−1 × g∗
−1 ×R0 ⊂ g−1 × g∗

−1 × g0
∼= V by R.

Lemma 6.3. (a) r : V → g∗ is a G-equivariant map;
(b) Ker r∗ = IQ;
(c) r (R) is dense in Q and r : R → r (R) is an isomorphism.

Proof. (a) is obvious from construction of r. Let us show (b). First, note that the
underlying manifold of V is g∗

0. As it is easy to check, the restriction of r to g∗
0 is
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equal to the identity map g∗
0 → g∗

0. Let µ : G × g∗
0 → V be the natural map induced

by the action of G on V and the embedding g∗
0 ⊂ V . We claim that the image of

µ is dense in V . Indeed, it is sufficient to show that the image of G1 × g∗
0 is dense

in the fiber g∗
−1 × g∗

0 ⊂ V . But this follows from Lemma 6.1. Thus µ∗ is injective.
G-equivariance of r implies that the map ξ : G× g∗

0 → g∗ (defined in the begining of
this section) equals r ◦ µ. Therefore by the injectivity of µ∗, IQ = Ker ξ∗ = Ker r∗.
To check (c) note that R is dense in V , hence r (R) is dense in Q. To prove that
r : R → r (R) is an isomorphism one calculates easily that dxr has a maximal rank
for any regular point x ∈ R0. �

By analogy with the even situation we consider V as a resolution of singularities
of Q. The mapping r gives a “geometric description” of Q as one can see from the
following.

Example 6.4. Let n = 2. Denote the RHS of (6.2) by

(
q s
u qt

)
. Since cdc = 0 for

n = 2, a straightforward calculation shows that r (v) satisfies the equations

q12u11 + q21u22 = 2q21u12 + (q11 − q22)u22 = 2q12u12 + (q22 − q11) u11 = 0,

u11u22 = u12u11 = u12u22 = 0.

One can check that the set of solutions of these equations coincides with Q. Note
that in this case the equations do not involve s. Calculating the tangent spaces, we
see that a point x ∈ Q is singular iff q is a scalar matrix.

We do not know equations on Q for a general n.

Now let us formulate the following

Conjecture 6.5. The Poisson superalgebras Gr Ū and O (Q) are isomorphic.

We give a proof of a weaker statement. Let S ∈ U is defined as in Section 4,
recall that its natural projection S̄ ∈ Ū belongs to the center of Ū . Let S̃ denote the
the image of S in Gr U . Both algebras Gr Ū and O (Q) are the quotients of Gr U ,

and therefore the localized algebras Gr Ū
[
S̃−1

]
and O (Q)

[
S̃−1

]
are both Poisson

superalgebras.

Theorem 6.6. The Poisson superalgebras Gr Ū
[
S̃−1

]
and O (Q)

[
S̃−1

]
are isomor-

phic.

Proof. Consider the following coinduced U -module

F = HomU (p) (U, U (g0)) .

Here the action of U (p) on U (g0) is defined by the conditions that U (g0) acts by
left multiplication and g1 acts by zero.

Lemma 6.7. AnnU F = I .
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Proof. Let F ′ = HomŪ+

(
Ū , U (g0)

)
. Since Ū is a quotient of U , there is the canonical

embedding F ′ ⊆ F . We claim that F ′ = F . Indeed, by corollary 3.5 U (g0) is the
subalgebra of Ū+ and Ū = Ū+U (g−1) is the decomposition with unique factorization.
Recall also that g−1 is supercommutative, hence U (g−1) = S (g−1). Therefore we have
an isomorphism of vector spaces.

(6.3) F ′ ∼= U (g−1)
∗ ⊗ U (g0) = S (g−1)

∗ ⊗ U (g0) ∼= F .

Hence F is well defined Ū -module, thus I ⊆ AnnU F .
It is easy to see that Sd (g−1)

∗ ⊗ U (g0) = Fg1 and Fg1 generates F as U -module.
Note that Fg1 is isomorphic to U (g0) ⊗ C−σ as U (g0)-module, where C−σ is the
one-dimensional g0-module of weight −σ. Therefore F ∼= Ind (U (g0) ⊗C−σ). Hence
any Verma module Mµ is a quotient of F and by Theorem 3.4 AnnU F ⊆ I . �

Let D be the associative algebra of differential operators on K and D̄ = D⊗U (g0).
Since O (K) = S

(
g∗
−1

)
and D is a Clifford algebra, D is isomorphic to EndC

(
S

(
g∗
−1

))
.

Therefore D̄ ∼= EndC

(
S

(
g∗
−1

))
⊗ U (g0). Using the identification F ∼= S (g−1)

∗
⊗

U (g0) as in (6.3) define D̄ action on F . Let i : D̄ → End (F) be the homomorphism
induced by this action. Obviously, i is injective. Let j : U → End (F) be the
homomorphism induced by the action of U on F . One can check that j (U) ⊆ i

(
D̄

)
,

and this gives a homomorphism γ = i−1 ◦ j : U → D̄. Lemma 6.7 implies

Corollary 6.8. Ker γ = I .

The algebra D̄ has the filtration induced by the natural filtration of U (g0) and
the natural filtration of D. We can identify Gr D̄ with O (V ). Indeed, the cotangent
bundle T K∗ ∼= G×P (g/p)∗ is a subbundle of V . The identification V ∼= g−1×g∗

−1×g∗
0

induces the isomorphisms T K∗ ∼= g−1 × g∗
−1 and V ∼= T K∗ × g∗

0. Therefore

O (V ) ∼= O (T K∗) ⊗O (g∗
0)

∼= GrD ⊗ GrU (g0) = Gr D̄.

It is easy to check that γ : U → D̄ is compatible with the filtrations on U and D̄.
Therefore γ induces the homomorphism Gr γ : Gr U → O (V ) of graded algebras.

Lemma 6.9. Gr γ = r∗.

Proof. The homomorphism Gr γ of supercommutative algebras induces a morphism
θ : V → g∗ of affine supervarieties. We have to check that θ = r. Consider the
submanifold V ′ = g∗

−1 × g∗
0 ⊂ V (the fiber over [g−1] ∈ K). By the definitions of

r and θ, r and θ coincide on V ′. Note that θ is G-equivariant as well as r. Since
GV ′ = V , we obtain θ = r. �

Thus, Gr I ⊂ KerGr γ = IQ. Since Ū = U/Ker γ, γ induces the injective ho-
momorphism γ̄ : Ū → D̄, which is also compatible with the filtrations (here the
filtration on Ū is the image filtration of U). Therefore γ̄ induces the homomorphism
Gr γ̄ : Gr Ū → O (V ).
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We will need again elements T ∈ U and S0 ∈ U (g0) defined in Section 4. Recall
that for any x ∈ U we denote by x̄ its image in Ū . Finally we deal with three filtered
algebras U, Ū and D̄ and by deg x we denote the degree of an element x of one of
these algebras.

Lemma 6.10. (a) γ (T ) = γ̄
(
T̄

)
∈ Sd

(
g∗
−1

)
⊗ S0;

(b) γ̄
(
Ū T̄ Ū

)
= D̄ (1 ⊗ S0);

(c) γ̄ : Ū T̄ Ū → D̄ (1 ⊗ S0) is an isomorphism preserving filtration.

Proof. Recall that
[
z0, T̄

]
= dT̄ and

[
g′

0, T̄
]

= 0. Therefore γ (T ) ∈ Sd
(
g∗
−1

)
⊗ g0,

where g0 is some element in the center of U (g0). Furthermore deg T = 2d, therefore
deg γ (T ) ≤ 2d, and deg g0 ≤ 2d. On the other hand, T acts by zero on any Verma
module Mµ such that ∆ (µ) = 0. Denote by h (g0) the image of g0 under the Harish-
Chandra map. Then ∆ divides h (g0) and the degree of h (g0) is not higher than 2d.
This implies h (g0) is proportional to Θ, i.e. (a) is proven.

To show (b) let LT be the ad g-submodule in Ū generated by T̄ . A straightforward
calculation shows that γ̄ (LT ) = S

(
g∗
−1

)
⊗ S0. Since g1T̄ = T̄g1 = 0, we have

Ū T̄ Ū = U (g0 ⊕ g−1)LT . Hence γ̄
(
Ū T̄ Ū

)
= D̄ (1 ⊗ S0).

Let us prove (c). Injectivity of γ̄ implies that γ̄ : Ū T̄ Ū → D̄ (1 ⊗ S0) is an iso-
morphism, and it is left to check that γ̄ preserves the filtrations. Let {xi} be a basis
in LT . For any y ∈ Ū T̄ Ū one can find gi ∈ U (g0 ⊕ g−1) such that y =

∑
gixi.

Obviously deg γ (gi) = deg gi and deg γ (xi) = deg xi = 2d. Therefore

deg γ (y) = max {deg γ (gi) γ (xi)} = max {deg gi} + 2d ≥ deg y.

That proves (c). �

Corollary 6.11. S̃ KerGr γ̄ = 0, and therefore the natural homomorphism Gr γ̄ :

Gr Ū
[
S̃−1

]
→ O (V )

[
S−1

0

]
is an isomorphism.

Proof. By Lemma 6.10 (c) Gr γ̄ : Gr
(
Ū T̄ Ū

)
→ Gr

(
D̄ (1 ⊗ S0)

)
is an isomorphism

of graded algebras. Therefore S̃ Gr Ū ⊂ Gr
(
S̄Ū

)
⊂ Gr

(
Ū T̄ Ū

)
and thus KerGr γ̄ ∩

S̃ Gr Ū = {0}. That implies S̃ KerGr γ̄ = 0. �

As follows from Lemma 6.9 Gr γ̄ = r̄∗, where r̄∗ : O (Q) → O (V ) is induced by r∗.
Therefore Corollary 6.11 implies the theorem. �

Remark 6.12. To prove the conjecture we have to show that S̃ is not a zero divisor in
Gr Ū , which means that the supervariety X ⊂ g∗ associated to Gr I is “irreducible”.
Theorem 6.6 in this terms means that Q is an “irreducible component” of X . It also
implies that X and Q coincide after removing singularities.

Finally let us note that Lemma 6.10 (c) implies the following statement.

Corollary 6.13. The localized algebras Ū
[
S̄−1

]
and EndC U (g−1) ⊗ U (g0)

[
S−1

0

]

are isomorphic.
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