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Abstract. Let g be a complex reductive Lie algebra and h be a Cartan subalgebra of

g. If k is a subalgebra of g, we call a g-module M a strict (g, k)-module if k coincides with

the subalgebra of all elements of g which act locally finitely on M . For an intermediate

k, i.e. such that h ⊂ k ⊂ g, we construct irreducible strict (g, k)-modules. The method

of construction is based on the D-module localization theorem of Beilinson and Bernstein.

The existence of irreducible strict (g, k)-modules has been known previously only for very

special subalgebras k, for instance when k is the (reductive) subalgebra of fixed points of

an involution of g. In this latter case strict irreducible (g, k)-modules are Harish-Chandra

modules.

We give also separate necessary and sufficient conditions on k for the existence of an

irreducible strict (g, k)-module of finite type, i.e. an irreducible strict (g, k)-module with

finite k-multiplicities. In particular, under the assumptions that the intermediate subalgebra

k is reductive and g has no simple components of types Bn for n > 2 or F4, we prove a simple

explicit criterion on k for the existence of an irreducible strict (g, k)-module of finite type.

It implies that, if g is simple of type A or C , for every reductive intermediate k there is an

irreducible strict (g, k)-module of finite type.
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Notational conventions

The ground field is C, however all our results can be easily carried out over an algebraically

closed field of characteristic zero. R+ (respectively Z+) denotes the set of non-negative

real numbers (respectively integers), and 〈·〉C, 〈·〉R+
, 〈·〉Z, or 〈·〉Z+

stands for linear span

respectively with coefficients in C, R+, Z, or Z+. If X is a topological space and F is a sheaf

of abelian groups on X, then Γ(F) denotes the global sections of F on X. If U ⊂ X is an

open subset, F|U denotes the restriction of F onto U , and F(U) := Γ(F|U). For v ∈ Γ(F),

v|U is the restriction of v to U . If X is an algebraic variety, OX stands for the structure sheaf

of X, and if f : X → Y is a morphism of algebraic varieties, f∗ denotes an inverse image

functor of O-modules. A multiset is defined as a map from a set Y into Z+\{0}, or, more

informally, as a set whose elements have finite multiplicities.

1 Origin of the problem

Let g be a finite-dimensional Lie algebra and M be a g-module. By definition an element

g ∈ g acts locally finitely on M if the subspace 〈m, g·m, g2 ·m, . . .〉C ⊂ M is finite-dimensional

for any m ∈ M . A result of V. Kac ,[K], claims that all elements of g which act locally finitely

on M form a Lie subalgebra g[M ] of g. Essentially the same result was established by S.

Fernando (independently and by a different method), [F], and Fernando demonstrated its

importance in his study of irreducible weight modules with finite-dimensional weight spaces.

In fact, as A. Joseph pointed out, this result is an easy corollary of B. Kostant theorem,

published in [GQS]. Let k be a subalgebra of g. We call M a (g, k)-module, or a generalized

Harish-Chandra module for the pair (g, k), if k ⊂ g[M ]. A strict (g, k)-module, or a strict

generalized Harish-Chandra module for the pair (g, k), is by definition a (g, k)-module M

for which g[M ] = k. Furthermore, we call k a Fernando subalgebra of g if there exists an

irreducible strict (g, k)-module M . (Clearly, for every k there exist induced g-modules which

are strict (g, k)-modules but are not necessarily irreducible.)

As we show at the end of this section, not all subalgebras of sl(n) are Fernando subal-

gebras. This makes it natural to pose the problem of describing all Fernando subalgebras of

a given finite-dimensional Lie algebra g. Not much is known for non-reductive Lie algebras
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g and the problem is still open in the reductive case. One of our objectives is to desribe all

Fernando subalgebras of a reductive Lie algebra g containing a Cartan subalgebra. In what

follows we will automatically assume that g is reductive and that h is a fixed Cartan subal-

gebra of g. In Theorem 1 below we prove that any intermediate subalgebra k, i.e. such that

h ⊂ k ⊂ g, is a Fernando subalgebra. The corresponding irreducible strict (g, k)-modules M

are necessarily weight modules and, as it turns out, k determines certain essential invariants

of M . Here is a brief description of relevant known results about weight modules.

Recall that a g-module M is a weight module if

M =
⊕

ν∈h∗

Mν , (1)

where h∗ stands for the dual space of h and Mν := {m ∈ M | h · m = ν(h)m ∀ h ∈ h}. It

is well known that, if M is irreducible, (1) is equivalent to h being contained in g[M ], see

for instance Proposition 1 in [PS]. The spaces Mν are the weight spaces of M , and the set

of all weights of M , i.e. linear functions ν ∈ h∗ with Mν 6= 0, is by definition the support

supp M of M . The weight multiplicities are the dimensions dim Mν and they can be finite

or infinite. The formal character of M is defined as the formal sum

∑

ν∈ suppM

(dimMν)eν .

This invariant of M has been studied now for about 80 years: the classical Weyl character

formula from 1924 computes the formal character of any irreducible finite-dimensional g-

module M as a function of its highest (or extremal) weight(s). In general, the support of

an irreducible weight module M carries less information than its formal character, however

at the two extremes, when dim M < ∞ or when dim Mν = ∞ for all ν ∈ supp M , the

support determines the formal character. Furthermore, it is known that, if M is irreducible,

all weight multiplicities are simultaneously finite or infinite. Not long ago O. Mathieu, [M],

completed the classification of the irreducible weight modules with finite weight multiplicities

(see also [BL]), and in particular Mathieu’s results lead to a formula for the formal character

of any such module. The case of infinite multiplicities is also important and interesting, for

most Harish-Chandra weight modules have infinite weight multiplicities. This is the case for

which Theorem 1 below is of interest.
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Let now h ⊂ k and M be an irreducible strict (g, k)-module. To explain the relationship

between k and supp M we need to introduce one more invariant of M , its shadow decompo-

sition. Let ∆ ⊂ h∗ denote the root system of g and ∆k ⊂ ∆ be the set of roots of k. Define

Γk as the submonoid of 〈∆〉Z generated by ∆\∆k. The M-decomposition of ∆, or the shadow

decomposition of ∆ corresponding to M ,

∆ = ∆−M ⊔ ∆I
M ⊔ ∆F

M ⊔ ∆+
M , (2)

is defined by setting

∆I
M := {α ∈ ∆ | α ∈ 〈Γk〉R+

, −α ∈ 〈Γk〉R+
} ,

∆F
M := {α ∈ ∆ | α 6∈ 〈Γk〉R+

, −α 6∈ 〈Γk〉R+
} ,

∆+
M := {α ∈ ∆ | α 6∈ 〈Γk〉R+

, −α ∈ 〈Γk〉R+
} ,

∆−M := {α ∈ ∆ | α ∈ 〈Γk〉R+
, −α 6∈ 〈Γk〉R+

} .

In particular, the M-decomposition of ∆ is determined by k. The decomposition (2) induces

a decomposition of g,

g =
(

gI
M + gF

M

)

⊕ g+
M ⊕ g−M , (3)

where

gF
M := h ⊕ (

⊕

α∈∆F
M

gα) , gI
M := h ⊕ (

⊕

α∈∆I
M

gα) , g±M :=
⊕

α∈∆±

M

gα .

It follows from the main results of [DMP] that pM := (gF
M + gI

M ) ⊕ g+
M is a parabolic

subalgebra whose semisimple part is nothing but the direct sum of Lie algebras [gF
M , gF

M ] ⊕

[gI
M , gI

M ]. In particular, [gF
M , gF

M ] and [gI
M , gI

M ] are two commuting semisimple subalgebras

of pM . Furthermore, if k = g[M ], then

k = (gF
M + (k ∩ gI

M )) ⊕ g+
M .

This is a consequence of the inclusion gF
M ⊕ g+

M ⊂ k and of the fact that g−M ∩ k = 0. The

latter follows easily from some basic representation theory of sl(2).

Note now that the very definition of Γk implies

supp M = supp M k + Γk , (4)
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where M k is any irreducible finite-dimensional k-submodule of M ; see also Proposition 2 in

[PS]. Moreover, as ∆I
M ⊂ Γk and (∆F

M + ∆I
M ) ∩ ∆ = ∅, if MF is any irreducible gF

M ⊕ g+
M -

submodule of M k, we have also

supp M = supp MF + Γk . (5)

MF always exists, is necessarily finite-dimensional, and is irreducible as a gF
M -module. Since

gF
M is reductive, suppMF is nothing but the intersection of the convex hull of all extremal

weights of MF with the weight lattice of gF
M shifted by any element of supp MF . Furthermore,

as g+
M acts by zero on MF , the right-hand side of (5) equals simply

suppMF + 〈∆I
M 〉Z + 〈∆−M〉Z+

. Therefore,

supp M = supp MF + 〈∆I
M 〉Z+

+ 〈∆−M〉Z+
, (6)

and supp MF is not determined by k (and could be arbitrary for a fixed k) while 〈∆I
M〉Z+

+

〈∆−M 〉Z+
is determined by k. In other words, the support of an irreducible strict (g, k)-module

is determined by k up to adding the support of an arbitrary irreducible finite-dimensional

gF
M -module. (A more general version of this statement for a not necessarily reductive Lie

algebra see in [PS].)

The starting point of this paper is the observation that, when M has infinite weight

multiplicities, its formal character (or equivalently its support) does not fully determine the

Lie algebra g[M ] and more precisely its subalgebra g[M ] ∩ gI
M . In particular, the existing

theory of weight modules provides no answer to the following question. Let k ⊂ g be

a subalgebra with k ⊃ h. Is it true that there exists an irreducible strict (g, k)-module?

Theorem 1 below gives an affirmative answer.

Once the existence problem for irreducible strict (g, k)-modules is resolved, a further

natural question arises. For which k does there exist an irreducible strict (g, k)-module M

of finite type, i.e. such that considered as a module over the reductive part kred of k M has

finite-dimensional isotypic components? Our second objective is to give a partial answer

to this latter question. Propositions 4 and 5 give respectively a necessary and a sufficient

condition on k for the existence of an irreducible strict (g, k)-module of finite type. For a

reasonably large class of subalgebras k these conditions are directly verifiable and provide a

definitive result, see Corollaries 1 and 2. In particular, if k is reductive and g has no simple

components of type Bn for n > 2 or F4, then g admits an irreducible strict (g, k)-module of
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finite type if and only if the centralizer in g of the semisimple part of k has simple components

only of types A and C .

The k-finiteness problem has been studied previously in two particular cases: when k

coincides with the fixed points of an involution on g, and when k is replaced by h. It is

a classical result that in the first case any irreducible (g, k)-module has finite type. In the

second case finite type means nothing but finite weight multiplicities, and the following

Proposition summarizes known results.

Proposition 1 Let k ⊂ g be a subalgebra with k ⊃ h, and let M be a strict irreducible

(g, k)-module.

(a) If k ∩ gI
M 6= h, then M necessarily has infinite weight multiplicities.

(b) If k ∩ gI
M = h and M has finite weight multiplicities, then [gI

M , gI
M ] is isomorphic to

a direct sum of simple Lie algebras of types A and C.

(c) If gI
M = h, then M necessarily has finite weight multiplicities.

Proof. Fernando has proved in [F] that k ∩ gI
M = h whenever M has finite weight

multiplicities. This implies (a). To prove (b), consider a non-zero vector m ∈ M with

g+
M ·m = 0. Recall that pM = (gF

M +gI
M)⊕g+

M is a parabolic subalgebra of g and set MFI :=

U(pM ) · m. It is straightforward to verify that MFI is irreducible as a [gF
M , gF

M ] ⊕ [gI
M , gI

M ]-

module. Therefore MFI ≃ MF
⊠ M I for some irreducible finite- dimensional [gF

M , gF
M ]-

module MF and some irreducible [gI
M , gI

M ]-module M I with [gI
M , gI

M ][M I] = h ∩ [gI
M , gI

M ].

Furthermore one notes that, as M has finite weight multiplicities, M I has also finite h ∩

[gI
M , gI

M ]-weight multiplicities. Then the main result of Fernando, [F], implies that [gI
M , gI

M ]

is isomorphic to a direct sum of simple Lie algebras of types A and C only. (b) is proved.

Claim (c) follows from the fact that MFI is a finite-dimensional pM -module when gI
M = h.

Indeed, then the surjection U(g) ⊗U (pM) MFI → M gives that M is a highest weight g-

module with respect to any Borel subalgebra b ⊂ g with h ⊂ b ⊂ pM . Hence M has finite

weight multiplicities. �

We will need the following slightly stronger version of claim (b). If M is a strict (g, k)-

module which is not necessarily irreducible, we call M isotropic if, for every non-zero m ∈ M ,

k coincides with the set of elements g ∈ g which act locally finitely on m. Any irreducible

g-module M is automatically isotropic as a strict (g, g[M ])-module.
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Lemma 1 Let k be solvable, k ⊃ h, and let M be an isotropic strict (g, k)-module with finite

weight multiplicities. Then there exists a parabolic subalgebra p ⊂ g with g = k+p, p∩k = h,

and such that its semisimple part pss is a direct sum of simple Lie algebras of types A and

C.

Proof. Without loss of generality we can assume that M is generated by some 1-

dimensional k-submodule Eλ ⊂ Mλ. Then (similarly to (4)) supp M = λ + Γk. We claim

that ∆k ∩ Γk = ∅. Indeed, if α ∈ ∆k ∩ Γk, the solvability of k implies that gα acts locally

finitely and g−α acts freely on M . Furthermore {λ+ Zα} ⊂ suppM , and therefore there are

infinitely many non-zero vectors mν ∈ Mν for ν ∈ {λ + Zα} with gα ·mν = 0. Hence M has

infinitely many Verma submodules of the rank one subalgebra g−α⊕h⊕gα, and consequently

M has infinite weight multiplicities. Contradiction. Therefore p := h ⊕ (
⊕

α∈∆∩Γk
gα) is a

parabolic subalgebra with g = k + p and p ∩ k = h.

It remains to show that the simple components of pss are of types A and C only. Consider

E := U(pss) · Eλ. Since for every α ∈ ∆pss both gα and g−α act freely on M , dimEµ =

dimEµ±α for any µ ∈ supp M , i.e. all weight multiplicities of E are equal. Then E is

admissible as defined in [M], and thus has finite length ([M], Lemma 3.3). As E is obviously

a strict (pss, h ∩ pss)-module, any irreducible submodule of E is also a strict (pss, h ∩ pss)-

module, and by Proposition 1(b) pss is isomorphic to a direct sum of simple Lie algebras of

types A and C . �

We conclude this introductory section with an example of a subalgebra k which is not

a Fernando subalgebra. Let g = sl(n) for n > 2 , let b denote the subalgebra of upper

triangular matrices, n := [b, b], and let k ⊂ b be the subalgebra of all upper triangular

matrices with zero first column. Note that k contains no Cartan subalgebra. We claim that

there is no irreducible strict (g, k)-module. Indeed, assume to the contrary that M is such a

g-module. Then, since n = [k, k], one can find a non-zero m ∈ M such that k ·m ⊂ 〈m〉C and

n · m = 0. Choose a basis h1, . . . , hn−2 in h ∩ k. The Casimir operator Ω can be written as

Ω = u2 + up(h1, . . . , hn−2) + q(h1, . . . , hn−2) +
∑

i

xiyi

for some non-zero u in the 1-dimensional orthogonal complement of h ∩ k (with respect to

the Killing form) in h, for certain polynomials p and q, degp = 1, degq = 2, and for certain

strictly upper (respectively strictly lower) triangular matrices yi (resp. xi). As Ω · m = µm
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for some µ ∈ C, and hi ·m = λim for some λi ∈ C, we obtain that u2 ·m ∈ 〈m〉C + 〈u ·m〉C.

Therefore u acts locally finitely on M , which is a contradiction because u /∈ k.

2 Existence theorem

Theorem 1 Any subalgebra k ⊂ g, such that h ⊂ k, is a Fernando subalgebra.

The proof splits naturally into two cases: that of a solvable k and that of a general k. We

start with some preliminaries, most of which amount to fixing notations.

2.1 Preliminaries needed in the proof. Let G denote a connected reductive algebraic

group with Lie algebra g. All subgroups of G considered will automatically be assumed to

be connected and will be denoted by capital letters B, P , etc. The lower case German letters

b, p, etc stand for the corresponding Lie subalgebras of g, and determine the subgroups B, P ,

etc.

B will always denote a fixed Borel subgroup of G whose Borel subalgebra b contains the

fixed Cartan subalgebra h of g. Sometimes b will satisfy additional requirements which will

be stated explicitly. The choice of b fixes a triangular decomposition g = n−⊕ h⊕ n+ where

b = h⊕n+. By ∆+ and ∆− we denote respectively the roots of b and b− := h⊕n−. N− is the

subgroup of G with Lie algebra n−. The big cell U of the flag variety G/B is defined as the

(open) orbit N− ·B of the point B ∈ G/B. N− acts freely on U . This enables us to identify

N− with n−, and therefore obtain a set of coordinates {xα}α∈∆− on U which correspond to

coordinates on n− arising from a basis of roots vectors in n−. The algebra OG/B(U) is then

identified with the polynomial algebra C[xα]α∈∆−. Note also that g acts by derivations on

OG/B via its canonical homomorphism into the tangent bundle TG/B .

If i : Q →֒ G/B is the embedding of a (possibly singular) subvariety of G/B, Q̄ will

denote the closure of Q in G/B, and Stabg Q ⊂ g is defined as the Lie algebra of the

subgroup of G which preserves Q.

Throughout the rest of the paper µ will denote a fixed regular b-dominant weight, some-

times satisfying explicit additional conditions. Following Beilinson and Bernstein, we denote

by Dµ the sheaf of twisted differential operators (or “tdo” for short) on G/B corresponding

to µ, see [BB1]. For a non-singular locally closed subvariety Q of G/B we define the tdo Dµ
Q

as the sheaf of left differential endomorphisms of the inverse image i∗Dµ. (If Q is an open

8



subvariety, Dµ
Q is simply the restriction Dµ

|Q.) If µ = ρ ( where ρ := 1/2
∑

α∈∆+ α), then

D := Dρ is nothing but the sheaf of differential operators on G/B. Furthermore, Dµ(U) can

be identified with the Weyl algebra C[xα, ∂
∂xα

]α∈∆− = D(U).

A Dµ
Q-module F is by definition a sheaf of Dµ

Q-modules on Q which is quasi-coherent as

a sheaf of OQ-modules. The support of F is the closure of the subvariety of consisting of all

closed points for which the sheaf-theoretic fiber of F is non-zero. We will make extensive

use of the Dµ-affinity theorem of A. Beilinson and J. Bernstein, [BB1]. This theorem states

that G/B is Dµ-affine , i.e. that every Dµ-module F is generated over Dµ by its global

sections Γ(F) and that all higher cohomology groups of the sheaf F vanish. Consequently

Γ is an equivalence between the category of Dµ-modules and the category of modules over

the associative algebra Γ(Dµ). Moreover, a further result of Beilinson and Bernstein, [BB1],

claims that Γ(Dµ) is canonically isomorphic to the quotient U(g)/(Kerθµ), where U(g) is

the universal enveloping algebra of g and (Kerθµ) is the two sided ideal generated by the

kernel of the central character θµ of a module with b-highest weight µ − ρ.

The following Lemma relates the Fernando subalgebra of the global sections of a Dµ-

module with its support.

Lemma 2 If Q is the support of a Dµ-module F , then g[Γ(F)] ⊂ Stabg Q.

Proof. Set R := (G/B)\Q. For any x ∈ g[Γ(F)], gx := expx is an automorphism of

G/B as well as of Γ(F). Furthermore, for any v ∈ Γ(F),

v|gx(R) = g−1
x (v)|R = 0 . (7)

Since F is generated by Γ(F) over Dµ, (8) implies F(gx(R)) = 0. But then gx(R) = R and

therefore x ∈ StabgQ. �

Assume that i : Q →֒ G/B is a locally closed embedding of a non-singular subvariety

Q. We denote by i∗ the Dµ
Q-module direct image functor. By definition, i∗F := Dµ

← ⊗Dµ
Q
F ,

where Dµ
← := i∗(Dµ ⊗OG/B

Ω∗G/B) ⊗OQ
ΩQ and Ω stands for volume forms. Furthermore the

Dµ-module i∗F has a natural OG/B-module filtration with successive quotients

Λmax(NQ) ⊗OQ
Si(NQ) ⊗OQ

F

for i ∈ Z+, where NQ denotes the normal bundle of Q in G/B, Si stands for ith symmetric

power, and Λmax stands for maximal exterior power. In the case when i is a closed embedding,
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Kashiwara’s theorem, [Ka], claims that i∗ is an equivalence between the category of Dµ
Q-

modules and the category of Dµ-modules with support in Q.

A locally closed embedding i is the composition of a closed embedding j : Q → V and

an open embedding l : V → X. Then i∗ = l∗j∗, where l∗ coincides with the sheaf-theoretic

direct image. Under the additional assumptions that F is irreducible and locally free (of

finite rank) as OQ-module, i∗F contains a unique irreducible Dµ-submodule i∗!F , see [B],

[BB1]. Furthermore, i∗!F(V ) = i∗F(V ). In particular the support of i∗!F is Q̄. If i = j, i.e.

if i is closed, then i∗!F simply equals i∗F .

We are now ready to start the proof of the Theorem 1. Throughout the proof k is a

fixed subalgebra of g with h ⊂ k. Our goal will be to construct an irreducible holonomic

Dµ-module such that its global sections form a strict (g, k)-module. We will do this in a very

explicit way, without referring to the structure theory of holonomic modules, and only using

the minimal preliminaries stated above.

2.2 The case of a solvable k. Assume first that k is solvable and let b− ⊃ k. Set

∆̃k := ∆−\∆k.

Lemma 3 There are global coordinates {uα}α∈∆−
on U such that h(uα) = α(h)uα for any

h ∈ h and any α ∈ ∆−, and k(uα) = 0 for all k ∈ k ∩ n− and all α ∈ ∆̃k.

Proof. Consider the K-orbit K · B ⊂ U . The polynomial algebra O(U) = C[xα]α∈∆−,

considered as a k-module, is a weight module (with respect to h). The ideal IK·B := Γ(IK·B)

is a k-submodule of O(U), and splits as a direct summand as an h-submodule. The quo-

tient O(U)/IK·B is nothing but Γ(OK·B) = C[xα]α∈∆k
, and therefore we have an h-module

decomposition

O(U) = C[xα]α∈∆k
⊕ IK·B .

Set then uα := xα for α ∈ ∆k, and define uα for α ∈ ∆̃k to be the projection of xα onto IK·B.

It is straightforward to check that uα are as required. �

Lemma 4 Set Z := ∪α∈∆̃k
Zα where Zα is the set of zeroes of uα in U , and V := U\Z.

Then StabgV = k.

Proof. Put Y := (G/B)\V . Then Y is the union of irreducible components

Y = (∪α∈∆̃k
Z̄α) ∪ Z1 ∪ · · · ∪ Zn ,
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where Z1, . . . , Zn are all Schubert varieties of codimension 1 in G/B. Furthermore, StabgV =

StabgY preserves each irreducible component, in particular

StabgV ⊂ (StabgZ̄) ∩ n− = k .

On the other hand, the definition of uα implies that Zα is k-invariant. Therefore V is

k-invariant and

StabgV = (StabgZ̄) ∩ n− = k .

�

Fix now a map λ : ∆̃k → C and consider the vector space

F k,b
λ,µ := O(V ) ⊗C 〈

∏

α∈∆̃k

uλ(α)
α 〉C .

It has a natural structure of a Dµ(V )-module and therefore of a Γ(Dµ)-module (as Γ(Dµ) is

a subalgebra of Dµ(V )). Define F k,b
λ,µ as the localization of F k,b

λ,µ to a Dµ-module, i.e. set

F k,b
λ,µ := Dµ ⊗Γ(Dµ) F k,b

λ,µ .

Then Γ(F k,b
λ,µ) = F k,b

λ,µ.

Proposition 2 For almost all pairs λ, µ, F k,b
λ,µ is an irreducible Dµ-module and g[F k,b

λ,µ] = k.

Proof. First we show that F k,b
λ,µ is an irreducible Dµ-module whenever µ is generic and

(imλ) ∩ Z = ∅. Note that, as IZ is generated by uα for α ∈ ∆̃k,

F k,b
λ,µ = C[uβ]β∈∆k

⊗C C[u±1
α ]α∈∆̃k

⊗C 〈
∏

α∈∆̃k

uλ(α)
α 〉C .

Therefore an immediate verification, using the condition (imλ) ∩ Z = ∅, shows that as a

D(U)-module F k,b
λ,µ is generated by each monomial of the form

∏

α∈∆− umα
α , where mα ∈ Z+

for α ∈ ∆k and mα ∈ λα +Z for α ∈ ∆̃k. On the other hand, F k,b
λ,µ is a semisimple module over

the commutative subalgebra generated by uα
∂

∂uα
for α ∈ ∆−, and the corresponding weight

spaces of F k,b
λ,µ are 1-dimensional and are spanned precisely by the above monomials. As any

submodule of a weight module is also a weight module, every non-zero D(U)-submodule of

F k,b
λ,µ contains at least one monomial, i.e. F k,b

λ,µ is necessarily an irreducible D(U)-module.

Thus F k,b
λ,µ|U is an irreducible Dµ

|U -module (as U is affine and thus Dµ
|U -affine).
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To prove the irreducibility of F k,b
λ,µ, consider the atlas {Uw}w∈W where Uw := w(U) (U =

Uid). It suffices to show that F k,b
λ,µ(Uw) is an irreducible D(Uw)-module for each w (as Uw

is affine and thus Dµ
G/B|Uw

-affine). The crucial observation is that, if w is the reflection

corresponding to a simple root α of b,

F k,b
λ,µ(Uw) = F

w(k)∩k,w(b)
λ′,µ , (8)

where

λ′(β) :=











λ(β) if β 6= α

−λ(β) + 2 (µ,β)
(β,β)

if β = α and − α ∈ ∆̃k

−2 (µ,β)
(β,β)

if β = α and − α ∈ ∆k .

The fact that µ is generic ensures that λ′ also satisfies the condition (imλ′) ∩ Z = ∅, and

thus F
w(k)∩k,w(b)
λ′,µ is an irreducible D(Uw)-module. Therefore induction on the length of w

with respect to b enables us to complete the argument.

Finally, it remains to check that g[F k,b
λ,µ] = k. Note that the restriction homomorphism

Γ(F k,b
λ,µ) → F k,b

λ,µ(V ) is an isomorphism. If x ∈ g[F k,b
λ,µ] and Vx := gx · V , the restriction

homomorphism Γ(F k,b
λ,µ) → F k,b

λ,µ(Vx) is also an isomorphism. Thus F k,b
λ,µ(V ) and F k,b

λ,µ(Vx) are

canonically identified. Furthermore, F k,b
λ,µ(Vx) = F k,b

λ,µ(V ∩ Vx) by the very definition of F k,b
λ,µ.

This is sufficient to conclude that V = Vx, as otherwise the codimension of V \(V ∩ Vx) in

V would necessarily be 1 and the restriction map F k,b
λ,µ(V ) → F k,b

λ,µ(V ∩ Vx) would not be

surjective. Therefore x ∈ StabgV , and since StabgV = k (Lemma 4), we obtain

g[F k,b
λ,µ] ⊂ k .

The opposite inclusion k ⊂ g[F k,b
λ,µ] is verified directly from the definition of F k,b

λ,µ. �

2.3 The case of a general k. Assume now that k is arbitrary. The subalgebra kss of g

generated by all gα for α ∈ ∆k ∩−∆k is a Levi subalgebra of k. Let c denote the centralizer

of kss in g. Furthermore, for a basis h1, . . . , hr of kss ∩h arising from a Chevalley basis of kss,

set h := h1 + · · · + hr. Then

ph := h ⊕ (
⊕

α(h)≥0

gα)

is a parabolic subalgebra. We call any Borel subalgebra b k-preferable if h ⊂ b ⊂ ph for a

suitable choice of a Chevalley basis.
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Fix a k-preferable Borel subalgebra b and set S := C ·B. Clearly, S is a closed subvariety

of G/B isomorphic to the flag variety C/(C ∩ B). As c ∩ k is a solvable subalgebra we can

consider US, ZS , VS ⊂ S as in section 2.2 for the pair (c, c∩ k) instead of (g, k). Furthermore,

we define YS to be the set of all points s ∈ VS for which dim((k+ c)∩bs) is minimal possible.

Obviously, YS is an affine open K ∩ C-invariant subvariety of VS .

Lemma 5 Q := K · YS is a non-singular subvariety in G/B and k ⊂ Stabg(Q̄) ⊂ k + c.

Proof. To prove that Q is non-singular it is sufficient to show that every s ∈ YS is a

non-singular point in K · S, i.e. that the dimension of the tangent space TK·S(s) is constant

for all s ∈ YS . The latter follows immediately from the equality

dimTK·S(s) = dim(k + c) − dim((k + c) ∩ bs),

as by the definition YS consists of s for which the right-hand side is maximal possible.

It is obvious that k ⊂ StabgQ̄. Furthermore S = V̄S , and thus K · S ⊂ Q̄. If x ∈ StabgQ̄,

then gtx ·B ∈ K ·S for sufficiently small t > 0 as K ·S is locally closed in G/B. This implies

that x ∈ k + c + b, i.e.

k ⊂ StabgQ̄ ⊂ k + c + b .

To show that actually StabgQ̄ ⊂ k+c, consider StabgQ̄ as a kss-module. StabgQ̄ is isomorphic

to k ⊕ m for some kss-submodule m of c + b. Let α be a b ∩ kss-minimal weight of m. Then

α(hi) ≤ 0 for i = 1, . . . , r and, as m ⊂ c + b, we have gα ⊂ b. Thus, α(h) ≥ 0. This is

possible only when α(hi) = 0 for each i = 1, . . . , r, i.e. when gα ∈ c. Since m is generated

by gα for all minimal α, we have finally m ⊂ c. Therefore StabgQ̄ ⊂ k + c. �

Let kr denote the radical of k. As an h-module kr equals (k∩c)⊕ t for a unique h-invariant

subspace t of kr . Set T :=expt. Since kr is solvable and t is contained in the nilpotent

radical of kr, one can easily show that the multiplication map m : T × (K ∩ C) → Kr is

an isomorphism of algebraic varieties. Therefore Kss × T × (K ∩ C) ≃ K, and furthermore

Kss × T × C ≃ K · C . Hence one can define a projection K × C → C , and this projection

induces the morphism p : K · C · B → S. Obviously p(Q) = YS .

Recall our construction for the solvable case and apply it to the pair (c, c∩ k). Under the

assumptions that the the restriction of µ to c∩h is generic (and b∩c-dominant) and that the

restriction of µ to kss ∩ h equals the half-sum kss ∩ b-positive roots of kss, this construction

yields an irreducible Dµ
S-module FS. Put F := FS|YS

.
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Proposition 3 M := Γ(i∗!p
∗F) is an irreducible strict (g, k)-module.

Proof. Obviously p∗F is an irreducible Dµ
Q-module which is a locally free OQ-module of

finite rank. Therefore i∗!p
∗F is an irreducible Dµ-module, and M is an irreducible g-module.

All it remains to show is that g[M ] = k.

We have k = k̃ ⊕ (c ∩ h) where k̃ := [k, k]. As a k̃-sheaf i∗!p
∗F is isomorphic to i∗!OQ,

and thus the k̃-action on i∗!p
∗F comes from the action of K̃ ⊂ G on OQ. This implies

that k̃ acts locally finitely on M . As a c ∩ h-sheaf i∗!p
∗F is isomorphic to OQ ⊗ L for some

one-dimensional c∩h-module L. Therefore c∩h acts also locally finitely on M , and k ⊂ g[M ].

To verify the opposite inclusion, note that, by Lemma 2, g[M ] ⊂ StabgQ̄ ⊂ k + c. Thus

we need to check only that g[M ] ∩ c ⊂ k ∩ c. By construction, Γ(F) is an isotropic strict

(c, k ∩ c)-module. Therefore Γ(p∗F|Q) is an isotropic strict (c, k ∩ c)-module. Furthermore,

i∗p
∗F has a natural c-sheaf filtration whith successive quotients

Λmax(NQ) ⊗OQ
Si(NQ) ⊗OQ

p∗F .

This implies that Γ(i∗p
∗F) is also an isotropic strict (c, k∩c)-module. Since M is a submodule

of Γ(i∗p
∗F), finally c[M ] = g[M ] ∩ c = k ∩ c.

�

Example 1 If c is abelian, Q is a (possibly non-closed) K-orbit in G/B. In this case our

construction is the same as the Beilinson-Bernstein construction of Harish-Chandra modules,

see [B], [BB1], [BB2]. Note however that in the classical Harish-Chandra setting (when k

coincides with the fixed points of an inner involution) c is abelian if and only if g has no

sl(2)-components.

3 On (g, k)-modules of finite type

Let M be a g-module and k be a Lie subalgebra of g[M ]. Given a finite-dimensional ir-

reducible k-module N , define the multiplicity [M : N ] as the supremum of [M ′ : N ] over

all finite-dimensional k-submodules M ′ ⊂ M . We say that M is of finite type over k if

[M : N ] < ∞ for any N . Respectively M is of infinite type over k if [M : N ] 6= 0 implies

[M : N ] = ∞ for any N . When M is a strict (g, k)-module we will say simply that M is of

finite (or, infinite) type. A Fernando subalgebra k of g is, by definition, of finite type if there

exists an irreducible strict (g, k)-module of finite type. Otherwise k is of infinite type.
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In the case when k equals the fixed points of an involution of g, it is a classical theorem

of Harish-Chandra that any irreducible (g, k)-module has finite type over k. Furthermore,

it is well known that in this case there exist irreducible strict (g, k)-modules. Consequently,

in this case k is of finite type. The problem of classifying all Fernando subalgebras of finite

type is of obvious significance in the structure theory of g-modules. In this section we give

separate necessary and sufficient conditions for a subalgebra k with k ⊃ h (k is a Fernando

subalgebra by Theorem 1) to be of finite type, providing in this way a partial solution of

this problem.

Our starting point is the following Lemma which is similar to the fact that the weight

multiplicities of an irreducible weight g-module are either all finite or all infinite.

Lemma 6 Let k be reductive in g. An irreducible (g, k)-module is either of finite or infinite

type over k.

Proof. Fix an irreducible (g, k)-module M . Note first that k acts semisimply on M as

M is a quotient of the g-module induced by any irreducible k-submodule of M . Therefore

M is of finite type over k if and only if all k-isotypic components of M are finite-dimensional.

Consider now any k-isotypic component M0 of M and represent M as a quotient of the

induced module

M ′ := U(g)⊗U (g)kU (k)M0,

where U(g)k := {y ∈ U(g)|adk(y) = 0}. If M is not of infinite type over k, we can choose M0

to be finite-dimensional. Therefore, to prove that M is then of finite type over k, it suffices

to show that M ′ is of finite type over k.

Let J be the left ideal generated by gU(g) ∩U(g)kU(k) Then there is an isomorphism of

k-modules

M ′ ≃ (U(g)/J) ⊗C M0

(U(g) being k-module via the adjoint action). As M0 is finite-dimensional, it is enough to

prove that U(g)/J is of finite type over k. The Poincaré-Birkhoff-Witt theorem gives an

isomorphism of k-modules

U(g)/J ≃ S ·(g/k)/I,

I being the ideal in S ·(g/k) generated by the k -invariant polynomials of non-zero degree in

g∗/k∗. Furthermore, S ·(g/k)/I ≃grΓ(OX), where X is a generic closed K-orbit in g∗/k∗, OX
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is the sheaf of regular functions on X, and gr stands for graded ring. Since passing to the

graded ring commutes with the k-action, all it remains to show is that Γ(OX) is of finite

type over k. But, for any x ∈ X, we have X ≃ K/Kx, where Kx is the stabilizer of x. Thus

Γ(OX) can be identified with the subspace of regular functions on K which are invariant

with respect to right multiplication by elements from Kx. As K is a linear algebraic group,

the k-module of all regular functions on K is of finite type over k. Therefore Γ(OX) is also

of finite type over k.

�

In the rest of the paper we assume that k ⊃ h and address the question of when k

is of finite type. In this case the reductive part kred is canonically embedded into k and

acts semisimply on any irreducible (g, k)-module M . Therefore M is of finite type over k if

and only if all kred-isotypic components of M are finite-dimensional. In particular, when k is

solvable, a (g, k)-module is of finite type over k if and only if it has finite weight multiplicities.

Furthermore, there is a simple criterion for a solvable k to be of finite type. Namely, k is of

finite type if and only if g = k + p for some parabolic subalgebra p of g with p ∩ k = h such

that pss is a direct sum of simple Lie algebras of types A and C . In one direction this is a

direct corollary of Lemma 1, and in the other direction it follows from the fact that, given

p, there always exists an irreducible strict (g, k)-module M of finite type with pM = p. M

can be taken as the module induced from a suitable k + pss-module M0 with trivial action

of [k, k]. We leave it to the reader to check this.

The above observation leads to the following necessary condition for a general k (with

h ⊂ k) to be of finite type. Recall that the reductive subalgebra c ⊂ g is defined as the

centralizer of kss in g.

Proposition 4 Let k be of finite type. Then the solvable subalgebra k ∩ c is of finite type in

c, i.e. c = (k∩ c) + p for some parabolic subalgebra p of c with p ∩ k = h and such that pss is

a direct sum of simple Lie algebras of types A and C. In addition, [k, pss] ⊂ k.

Proof. Let M be an irreducible strict (g, k)-module of finite type and M ′ be a kss-

isotypic component of M . Fix a Borel subalgebra b′ ⊂ kred with b′ ⊃ h and set M ′′ :=

{m′ ∈ M ′|[b′, b′] · m′ = 0}. An immediate verification shows that M ′′ is an isotropic strict

(c, k ∩ c)-module of finite type. Therefore c = (k ∩ c) + p for a parabolic subalgebra p of c as

in Lemma 1.

16



It remains to show that [k, pss] ⊂ k. Assume the contrary, i.e. that there are γ ∈ ∆k\∆kred

and β ∈ ∆pss with α = β + γ ∈ ∆\∆k. Moreover, γ can be assumed to be a b′-maximal

weight of the kred-module k. Let α1, . . . , αs be the simple roots of b′. Then −γ, α1, . . . , αs is a

system of simple roots of a reductive subalgebra s containing kred. The subalgebra q := k∩ s

is a parabolic subalgebra of s, and its reductive part equals kred. As q ⊂ k, there is an

irreducible finite-dimensional q-submodule Lλ ⊂ M of b′-highest weight λ. Furthermore,

since ∆q\∆kred
⊂ Γk, M has an infinite family of finite-dimensional irreducible q-submodules

Lλk
with highest weights λk belonging to {λ + 〈∆q\∆kred

〉Z+
}. Let Mk := U(s) · Lλk

. For

almost all k, Mk contains a kred-submodule isomorphic to Lλ. Thus the multiplicity of Lλ in

M is infinite. Contradiction. �

Proposition 4 implies the existence of a large class of reductive subalgebras k of infinite

type.

Corollary 1 Let g be simple of types Bn for n > 4, Dn for n > 4, E7, E8, and let k be

reductive and such that css has a simple component not of type A or C. Then k is of infinite

type.

Example 2 The Lie algebra g = sp(6) is the simple Lie algebra of smallest dimension

which admits a subalgebra k of infinite type with non-zero nilpotent radical and non-zero

semisimple part. Let k = h⊕gα⊕g−α ⊕gβ where α and β are respectively a long and a short

orthogonal roots. Then there is no p as in Proposition 5, and hence k is of infinite type.

Our final step is to establish a sufficient condition for a reductive k to be of finite type.

Proposition 5 Let k be reductive. Assume that 〈∆c〉C ∩∆ = ∆c (or equivalently that h+ css

is the reductive part of a parabolic subalgebra of g) and that the simple components of css are

of types A and C only . Then k is of finite type.

Proof. Let h′ be the centralizer of css in h, and k′ := kss+h′. The condition 〈∆c〉C∩∆ = ∆c

enables us to choose a k-preferable Borel subalgebra b for which the projection of ∆−\∆c

onto (h′)∗ is contained in some open half-space of some real subspace of (h′)∗. Put Q1 :=

K ′/(K ′ ∩ B), Q2 := Css/(Css ∩ B) and Q := (K ′ × Css) · B. Then Q = Q1 × Q2 is a closed

subvariety of G/B, and Lemma 5 implies that StabgQ = k′ ⊕ css. Let F2 be an irreducible

strict (css, h
′′)-module with finite weight multiplicities, where h′′ := css ∩ h. The existence of
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F2 is well-known, see for instance [M]. Denote by F2 the localization of F2 on Q2. Set finally

F := OQ1
⊠ F2, M := i∗F and M := Γ(M), i being the closed embedding of Q into G/B.

Arguments similar to ones in the proof of Proposition 3 imply that M is a strict irreducible

(g, k)-module. We will show that M is of finite type. Consider the filtration of M with

successive quotients

Λmax(NQ) ⊗OQ
Si(NQ) ⊗OQ

F ,

and choose a finer filtration of M such that its successive quotients are all sheaves O(λ)⊗OQ

F , where λ runs over the multiset D of sums of roots from ∆−\∆k+c and O(λ) stands for the

invertible K ′ × Css-sheaf on Q induced by λ. Then O(λ) ⊗OQ
F ≃ O(λ′) ⊠F(λ′′), where λ′

(respectively, λ′′) is the projection of λ on (h′)∗ (resp., (h′′)∗) and F(λ′′) := F2 ⊗OQ2
O(λ′′).

Thus M is a k + c-submodule of ⊕λ∈D(Γ(O(λ′)) ⊠ Γ(F(λ′′))). The Borel-Weil-Bott theorem

implies that Γ(O(λ′)) 6= 0 if and only if λ′ is b∩k-antidominant. In the latter case Γ(O(λ′)) =

V (−λ′)∗, where V (−λ′) is the irreducible finite-dimensional k′-module of b∩k′-highest weight

−λ′. Furthermore Γ(F(λ′′)) is a (css, h
′′)-module of finite type over h′′. Therefore to show that

M has finite type it suffices to check that for each ω ∈ (h′)∗ the set Dω := {λ ∈ D|λ′ = ω}

is finite. The latter is the direct corollary of the fact that the projection of D onto (h′)∗ is

contained in an open half-space of a real subspace of (h′)∗. �

Corollary 2 Let k be reductive.

(a) If c is abelian, then k is of finite type.

(b) Assume that g has no simple components of type Bn for n > 2 or F4. Then k is of

finite type if and only if all simple components of css are of types A and C.

Proof. (a) is obvious. In proving (b) one can assume that g is simple. If g is not of

type Cn, Bn for n > 2 or F4, for any root subsystem Ξ ⊂ ∆ we have 〈Ξ〉C ∩ ∆ = Ξ, and

therefore Propositions 4 and 5 imply the statement. Furthermore, for g of type Cn it is also

always true that 〈∆c〉C ∩ ∆ = ∆c, but it is essential that c is a centralizer of kss. Here the

equality 〈∆c〉C∩∆ = ∆c follows from the observation that, for any two orthogonal long roots

α, β ∈ ∆c, we have also (α + β)/2 ∈ ∆c. This is easily verified explicitely. �
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