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Abstract. We decompose the category of finite-dimensional gl (m|n)-
modules into the direct sum of blocks, show that two blocks are
equivalent iff their degrees of atypicality are the same. Further-
more we show that a block is equivalent to the maximal atypical
block in the category of gl (k|k)-modules.
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1. Introduction

The abelian category of finite-dimensional representations of gl (m|n)
is not semi-simple, i.e. indecomposable objects do not coincide with
irreducible. In this paper we show that it splits into the direct sum
of indecomposable full subcategories called blocks. Similar situation
happens in the representation theory over fields of finite characteris-
tic. We show that each block consists of all representations of gl (m|n)
with fixed action of the center of a universal enveloping algebra of
gl (m|n). We also show that two blocks are equivalent as categories iff
the degrees of atypicality of the corresponding central characters are
the same. Thus the category of finite-dimensional gl (m|n)-modules
has min (m, n) blocks up to equivalence. Moreover, a block of degree of
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atypicality k is equivalent to the block of maximal degree of atypicality
in the category of finite-dimensional gl (k|k)-modules. This allows one
to reduce many problems in representation theory (such as calculat-
ing multiplicities of irreducible modules in Kac modules and projective
modules) to the case of a maximal degenerate block of gl (k|k). In par-
ticular the combinatorial algorithm for the character of an irreducible
representation obtained in [?] becomes clearer in this setting, as we
discuss in the last chapter.

2. Category F

Let g = gl (m|n) over C, F be the category of finite-dimensional g-
modules. As it was shown in [?] all irreducible objects can be described
by highest weights similarly to irreducible gl (n)-modules. Here we
briefly recall how it works.

First we fix a Cartan subalgebra h of diagonal matrices. Then g has
a root decomposition

g = h ⊕ (⊕α∈∆gα) ,

where each root subspace gα is 1-dimensional even or odd. According
to the parity of gα a root α is called even or odd. The set of even roots
is denoted by ∆0, the set of odd roots is denoted by ∆1. Consider the
natural basis {ε1, . . . , εm, δ1, . . . , δn} in h∗. Then

∆0 = {εi − εj|i, j = 1, . . . , m} ∪ {δi − δj|i, j = 1, . . . , n} ,

∆1 = {± (εi − δj) |i = 1, . . . , m, j = 1, . . . , n} .

We fix also a g-invariant bilinear symmetric form 〈, 〉 on g∗ by the
condition

〈εi, εj〉 = −〈δi, δj〉 = δij, 〈εi, δj〉 = 0.

Finally we divide ∆ into the set of positive and negative roots in the
following way

∆+
0 = ∆0 ∩ ∆+ = {εi − εj|1 ≤ i < j ≤ m} ∪ {δi − δj|1 ≤ i < j ≤ n} ,

∆+
1 = ∆1 ∩ ∆+ = {εi − δj|1 ≤ i ≤ m, 1 ≤ j ≤ n} ,

∆− = −∆+,

and fix a triangular decomposition

g = n− ⊕ h ⊕ n+, where n± = ⊕α∈∆±gα.

The set of weights of g is a subset P ⊂ h∗ defined as

P =

{

λ ∈ h∗|2
〈λ, α〉

〈α, α〉
∈ Z for any α ∈ ∆0

}

.
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A weight λ ∈ P is positive iff 2 〈λ,α〉
〈α,α〉

> 0 for any α ∈ ∆+
0 . A weight

λ ∈ P is regular iff 〈λ, α〉 6= 0 for any α ∈ ∆0. The set of positive
weights we denote by P+, the set of regular weights we denote by P reg.
In the standard coordinates

λ ∈ P iff 〈λ, εi〉 − 〈λ, εj〉 ∈ Z, 〈λ, δi〉 − 〈λ, δj〉 ∈ Z;

λ ∈ P reg iff 〈λ, εi〉 6= 〈λ, εj〉 , 〈λ, δi〉 6= 〈λ, δj〉 for i 6= j;

λ ∈ P+ iff 〈λ, εi〉 > 〈λ, εj〉 for 1 ≤ i < j ≤ m and 〈λ, δi〉 < 〈λ, δj〉 for 1 ≤ i < j ≤ n.

Now we are able to describe irreducible finite-dimensional g-modules.
It was shown in [?] that all irreducible modules of F are in one-to-one
correspondence with positive weights. For each λ ∈ P+ one constructs
an irreducible g-module Lλ in the following way. Define a Verma mod-
ule Mλ = U (g) ⊗U (b) cλ, where b = h ⊕ n+, cλ be the irreducible 1-
dimensional b-module determined by the conditions n+ · cλ = 0, h|cλ

=

(λ − ρ) (h) · id for any h ∈ h, ρ = 1/2
(

Σα∈∆+
0
α − Σα∈∆+

1
α
)

. Then Mλ

has a unique irreducible quotient Lλ which is finite-dimensional. (To
be honest each λ ∈ P+ determines two irreducible modules since cλ

can have dimension (1|0) or (0|1). To avoid boring but nonessential
considerations of parity we allow an isomorphism to change parity, i.e.
we consider M and ΠM as isomorphic, where Π stays for the changing
parity functor.)

Here similarity between gl (m|n)-modules and sl (n)-modules ends,
since the category F is not semi-simple and has rather complicated
structure (see [?]). So the natural question arises: what are the blocks,
i.e. “minimal indecomposable pieces” in the category F . We answer
this question in the next section.

3. Categories Fχ

Let Z (g) be the center of the universal enveloping algebra U (g). A
central character is a homomorphism χ : Z (g) → C. We say that a g-
module M has a central character χ if for any z ∈ Z (g) , m ∈ M there is
n ∈ Z≥0 such that (z − χ (z) id)n·m = 0. Clearly any finite-dimensional
indecomposable g-module has some central character, and any finite-
dimensional g-module decomposes into a direct sum of submodules
with central characters. Let Fχ be the subcategory of F consisting
of all modules with central character χ. Obviously, each Fχ is a full
subcategory of F . Furthermore, F = ⊕Fχ, where the summation is
taken over all central characters χ for which Fχ is nonempty. We are
interested in a description of the structure of Fχ.
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First, let us describe irreducible modules in Fχ. We use a Harish-
Chandra homomorphism HC : Z (g) → Pol (h∗). The construction of
this homomorphism is the same as for semi-simple Lie algebras (see for
example [?]). Thus, any λ ∈ h∗ defines a central character χλ by the
rule χλ (z) = HC (z) (λ). Definition of HC immediately implies that
an irreducible module Lλ has a central character χλ. Let us denote
by Pχ the set of weights λ ∈ P such that χλ = χ and set P+

χ =
Pχ ∩ P+, P reg

χ = Pχ ∩ P reg. Then obviously irreducible objects in Fχ

are Lλ for all λ ∈ P+
χ . To study the category Fχ we need a good

description of P+
χ . The following statement was first formulated in [?]

and proved in [?].

Proposition 3.1. Let λ, µ ∈ P , W be the Weyl group of g0. Then
χλ = χµ iff there is a sequence of odd roots α1, . . . , αs ∈ ∆1 and w ∈ W
such that µ = w (λ + α1 + · · · + αs) and 〈λ + α1 + · · · + αi−1, αi〉 = 0
for i = 1, . . . , s.

We want to give more constructive condition for χλ = χµ. Let λ ∈ P
and Aλ = {α1, . . . , αk} be a maximal set of mutually orthogonal odd
positive roots such that 〈λ, αi〉 = 0 for i = 1, . . . , k. If λ ∈ P reg the set
Aλ is unique. Otherwise there could be several possible Aλ but they
all have the same number of elements k. This number is called degree
of atypicality of λ and is denoted by #λ. Let α1 = εi1 − δj1 , . . . , αk =
εik − δjk

. Since α1, . . . , αk are mutually orthogonal ip 6= iq and jr 6= js.
The core cλ of λ is a pair of sets aλ = {〈λ, εi〉 |i 6= i1, . . . , ik} and
bλ = {〈λ, δj〉 |j 6= j1, . . . , jk}. The core does not depend on the choice
of Aλ.

Example 3.2. Let g = gl (3|3) , λ = 5ε1 + 3ε2 − ε3 + 4δ1 + 3δ2 + δ3.
Then Aλ = {ε3 − δ3} , #λ = 1, cλ = ({5, 3} , {−4,−3}).

If λ is not regular, say λ = 5ε1−3ε2−3ε3 +4δ1 +3δ2 +δ3, then Aλ is
either {ε2 − δ2} or {ε3 − δ2} , #λ = 1. Meanwhile the core is uniquely
defined: cλ = ({5,−3} , {−4,−1}).

Proposition 3.1 implies the following

Corollary 3.3. Let λ, µ ∈ P . Then χλ = χµ iff #λ = #µ and cλ = cµ.

Thus for any central character χ one can define #χ and cχ by putting
#χ = #λ and cχ = cλ for some λ ∈ Pχ. Furthermore, χ is uniquely
determined by #χ and cχ, and Pχ = {λ ∈ P |#λ = #χ, cλ = cχ}.

The next question we are going to discuss is when two categories Fχ

and Fχ′ are equivalent. Consider the simplest example first.
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Example 3.4. Consider the case when the degree of atypicality of a
central character χ is zero. Assume that Fχ is non-empty. By corol-
lary 3.3 P+

χ consists of one element λ, and therefore Fχ has only one
irreducible module Lλ. Moreover, Lλ is isomorphic to so called Kac
module

Vλ = U (g) ⊗
U(g0⊕g

+
1 ) L0

λ,

where g+
1 = ⊕α∈∆+

1
gα and L0

λ is the irreducible g0-module with the

highest weight λ and with trivial action of g+
1 . Now note that for any

g0-module M0 one can consider the induced g-module
Ind M0 = U (g) ⊗

U(g0⊕g
+
1 ) M0.

Obviously Ind is a functor from the category of finite-dimensional g0-
modules to the category F . Let F0

λ be the category consisting of finite-
dimensional g0-modules with all irreducible subquotients isomorphic to
L0

λ. Then it is not hard to show that Ind: F0
λ → Fχ is an equivalence

of categories. The inverse functor is Inv, which maps M to Mg
+
1 =

{

m ∈ M |g+
1 · m = 0

}

.
To complete the picture note that g0

∼= sl (m)⊕ sl (n)⊕ z, where z is
two dimensional center of g0. Then two functors M 7→ Homg0 (M, L0

λ)
and N 7→ N ⊗C L0

λ establish the equivalence between the category F0
λ

and the category of finite-dimensional nilpotent z-modules. Thus, all
Fχ with #χ = 0 are equivalent.

If we proceed to the case #χ > 0, the problem becomes more in-
teresting. Our main results can be formulated in the following three
theorems.

Theorem 3.5. Categories Fχ and Fχ′ are equivalent iff #χ = #χ′.

Theorem 3.6. Let #χ = k > 0. Then the category Fχ is equivalent to
the category Fk of finite-dimensional gl (k|k)-modules with the (most
atypical) central character χρ.

Theorem 3.7. For any central character χ the category Fχ is inde-
composable.

The rest of the paper consist of proofs of these theorems.

4. Combinatorial preparations

The case #χ = 0 is already done in example 3.4. Thus we can
assume that #χ = k > 0. Denote by Mp,q the set of all pairs (a, b),
where a is a p-element subset in Z, b is a q-element subset in Z, and
a ∩ b = ∅. Then cχ ∈ Mp,q where p = m− k, q = n − k.
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We say that c′ = (a′, b′) ∈ Mp,q is a shift of c = (a, b) ∈ Mp,q iff one
of the following conditions holds:

(1) there is t ∈ b such that b′ = (b r {t}) ∪ {t ± 1} and a′ = a;
(2) there is t ∈ a such that a′ = (a r {t}) ∪ {t ± 1} and b′ = b.
We say that c′ = (a′, b′) ∈ Mp,q is a reflection of c = (a, b) ∈ Mp,q

iff there is t ∈ a such that t ± 1 ∈ b and a′ = (a r {t}) ∪ {t ± 1} , b′ =
(b r {t ± 1}) ∪ {t}.

Example 4.1. Let c = ({3, 5} , {2, 4}). By shifting one can obtain from
c either ({3, 6} , {2, 4}) or ({3, 5} , {1, 4}). By reflecting one can obtain
from c three elements : ({2, 5} , {3, 4}) , ({3, 4} , {2, 5}) and ({4, 5} , {2, 3}).

We will need the following combinatorial

Lemma 4.2. For any two c,c′ ∈ Mp,q there exist c0, . . . , cs ∈ Mp,q such
that ci+1 is either a shift or a reflection of ci and c0 = c, cs = c′.

Proof. For an arbitrary c = (a, b) ∈ Mp,q let m (c) = a∪b. Then clearly
a reflections does not change m (c) and a shift increases or decreases
one element in m (c) by 1. Thus, using only shifts one can convert
m (c) into {1, 2, . . . , p + q}. Now each reflection increases or decreases
one element in a by 1, thus one can convert a into {1, . . . , p}. �

5. Translation functors

In this section we prove Theorem 3.5 by an explicit construction of
functors giving equivalence between Fχ and Fχ′. These functors are
similar to translation functors for category O (see [?]).

Let E be a finite-dimensional g-module. Let TE : F → F be a func-
tor defined by TEM = M⊗CE. If χ and χ′ are two central characters we

can define a functor T χ,χ′

E : Fχ → Fχ′ by putting T χ,χ′

E M = pχ′ (TEM),
where pχ′ : F → Fχ′ is the natural projection.

We need the following facts, proved in [?].

Lemma 5.1. The dimension of b-invariant subspace of the weight µ
in TE (Lλ) is not bigger than the multiplicity of the weight µ− λ in E.

Lemma 5.2. (a) A functor T χ,χ′

E is exact.

(b) Functors T χ,χ′

E and T χ′,χ
E∗ are adjoint, i.e. there are canonical

isomorphisms between Homg

(

T χ,χ′

E M, N
)

and Homg

(

M, T χ′,χ
E∗ N

)

and

between Homg

(

M, T χ,χ′

E N
)

and Homg

(

T χ′,χ
E∗ M, N

)

.

Now we are going to show that for some special χ, χ′ and E the

functor T χ,χ′

E is an equivalence of categories. Denote by P (E) the
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multiset of weights of E, i.e. the multiplicity of µ in P (E) is equal to
the multiplicity of the weight µ in E.

Lemma 5.3. Let χ, χ′ be central characters and λ ∈ P+
χ be such that

| (λ + P (E)) ∩ P+
χ′ | = 1. Then T χ,χ′

E Lλ = Lλ′ is irreducible.

Proof. It follows from lemma 5.1 that the dimension of a maximal b-

invariant subspace in T χ,χ′

E Lλ is at most 1. This implies irreducibility

of T χ,χ′

E Lλ. �

Proposition 5.4. Let central characters χ and χ′ and a finite-dimensional
g-module E satisfy the following conditions:

(1) For any λ ∈ P+
χ , (λ + P (E)) ∩ P reg

χ′ = (λ + P (E)) ∩ P+
χ′ is a

one-element multiset {λ′};
(2) For any µ ∈ P+

χ′ , (µ − P (E)) ∩ P reg

χ′ = (µ − P (E)) ∩ P+
χ′ is a

one-element multiset {µ′}.

Then the functors T χ,χ′

E and T χ′,χ
E∗ establish an equivalence of cate-

gories Fχ and Fχ′.

Proof. Note that by lemma 5.2 (b) it suffices to check that the functors

T χ,χ′

E and T χ′,χ
E∗ are faithful. By symmetry of conditions (1) and (2) it is

sufficient to check that T χ,χ′

E is faithful. By lemma 5.2 (a) it is sufficient

to show that T χ,χ′

E Lλ 6= 0.
Here we recall the superanalogue of Borel-Weil-Bott theorem (for

details see [?]). Consider the flag supermanifold G/B. We will work
in the category of G-sheaves on G/B, i.e. the sheaves obtained by
induction from B-modules. Let Oλ be the invertible sheaf on G/B
induced by the infinitesimal character λ−ρ. It was shown in [?] that if
λ ∈ P+ then the space of global sections Γ (Oλ) is a g-module, which
contains an irreducible submodule isomorphic to Lλ. It was also shown
there that if λ /∈ P reg then all cohomologies of Oλ vanish. Let LE be
the sheaf on G/B induced by G-module E considered as B-module.
Then Γ (LE) = E and Γ (L⊗O LE) = Γ (L) ⊗C E for any G-sheaf L.
Finally since the action of U (g) is defined on any G-sheaf L on G/B
one can define a canonical projection pχ (L) on the component with
central character χ. By definition Γ (pχ (L)) = pχ (Γ (L)).

Consider the sheaf pχ′ (Oλ ⊗O LE). It has a G-filtration with invert-
ible quotients Oν where ν ∈ (λ + P (E)) ∩ Pχ′ . By condition (1) any
ν ∈ (λ + P (E))∩Pχ′, ν 6= λ′ is not regular. Therefore all cohomologies
of Oν vanish for ν 6= λ′. Hence

Γ (pχ′ (Oλ ⊗O LE)) = Γ (Oλ′) .
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On the other hand

Γ (pχ′ (Oλ ⊗O LE)) = pχ′ (Γ (Oλ ⊗O LE)) = pχ′ (Γ (Oλ) ⊗C E) .

Thus,

T χ,χ′

E Γ (Oλ) = Γ (Oλ′) .

Now note that conditions (1) and (2) imply that the mapping ε : P+
χ →

P+
χ′ , which sends λ to λ′ is a bijection. For any irreducible subquotient

Lκ of Γ (Oλ) , κ 6= λ, T χ,χ′

E Lκ is either Lκ′ (κ′ 6= λ′) or zero by lemma 5.3.

Since by lemma 5.2 (a)T χ,χ′

E is an exact functor and Γ (Oλ′) has a sub-
module isomorphic to Lλ′, there should be an irreducible subquotient

Lκ in Γ (Oλ) such that T χ,χ′

E Lκ = Lλ′. But then κ = ε−1 (λ′) = λ. �

Lemma 5.5. Let χ and χ′ be central characters with #χ = #χ′.
(a) If cχ′ is a shift of cχ, then for one of E = Lε1 or E = L−δn the

functor T χ,χ′

E is an equivalence of categories ;
(b) If cχ′ is a reflection of cχ, then for one of E = L2ε1 or E =

L−δn−1−δn
∼= L∗

2ε1
the functor T χ,χ′

E is an equivalence of categories.

Proof. (a) Let cχ = c = (a, b) , cχ′ = c′ = (a′, b′). We consider the
case a′ = (a r {t}) ∪ {t + 1}, b′ = b. (All other variants of a shift
can be done in the similar way.) In our case E = Lε1 , and P (E) =
{ε1, . . . , εm, δ1, . . . , δn}. It is sufficient to prove that χ, χ′ and E satisfy
the conditions (1) and (2) of proposition 5.4. Let λ ∈ P+

χ . Since t ∈ a
there is i such that 〈λ, εi〉 = t. Then 〈λ, εi−1〉 ≥ t + 1. First, consider
the case when 〈λ, εi−1〉 > t + 1. Then t + 1 /∈ aµ if µ = λ + εk (k 6= i)
or µ = λ + δj, therefore (λ + P (E)) ∩ Pχ′ = {λ + εi}. Thus, the
condition (1) for λ in this case is true. Next, assume that 〈λ, εi−1〉 =
t + 1. Since t + 1 /∈ a, there is j such that 〈λ, δj〉 = t + 1. Then
(λ + P (E)) ∩ Pχ′ = {λ + εi, λ + δj}. Obviously, λ + εi /∈ P reg. On
the other hand, λ + δj ∈ P+, since t ∈ a and therefore 〈λ, δl〉 6= t for
any l = 1, . . . , n. Therefore the condition (1) holds. The condition (2)
can be done in the same manner: just change in above argument t to
t + 1, t + 1 to t and i − 1 to i + 1.

(b) We consider the case when a′ = (a r {t})∪{t + 1}, b′ = (b r {t + 1})∪
{t}. (The other cases are completely similar). Take E = L2ε1 . Then
P (E) = {εi + εj|1 ≤ i ≤ j ≤ m} ∪ {εi + δj|1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪
{δi + δj|1 ≤ i < j ≤ n}. Since t ∈ a, t + 1 ∈ b, for any λ ∈ P+

χ there
are i and j such that 〈λ, εi〉 = t, 〈λ, δj〉 = t + 1 and 〈λ, εl〉 6= t + 1
for l = 1, . . . , m, 〈λ, δl〉 6= t for l = 1, . . . , n. Then one can easily see
that (λ + P (E)) ∩ Pχ′ = {λ + εi + δj} and λ + εi + δj ∈ P+. Thus
the condition (1) holds. Condition (2) can be checked in the same
manner. �
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Now lemmas 4.2 and 5.5 imply theorem 3.5.

6. Induction functor

Here we prove Theorem 3.7. Intuitively it is clear that one should
use an induction from gl (k|k) ⊂ gl (m|n) to establish an equivalence
of categories Fk and Fχ. But a straightforward construction does not
work. We have to cut both categories, prove an equivalence between
cut pieces and then go to a limit.

Fix k, denote gl (k|k) by g′. Put p = m− k, q = n − k. We consider
g′ as a subalgebra in g with the root system ∆′ ⊂ ∆, where

∆′ = {εi − εj|i, j = p + 1, . . . , m}∪{εi − δj|i = p + 1, . . . , m, j = 1, . . . , k}∪{δi − δj|i, j = 1, . . . k

We use notations F ′, (∆+)
′
, (P+)

′
, ρ′, L

′

λ e.t.c. for objects related to
the Lie superalgebra g′.

Clearly, h′ = h ∩ g′ is a Cartan subalgebra of g′, and h = h′ ⊕ h′′,
where h′′ is the orthogonal complement to h. Note that the natural
basis of h′ is {εp+1, . . . , εm, δ1, . . . , δk}, and the natural basis of h′′ is
{ε1, . . . , εp, δk+1, . . . , δn}, and [h′′, g′] = 0. Let p = g′ + b. Then p is a
parabolic subalgebra in g and p = g′ ⊕ h′′ ⊕ r, where r = ⊕α∈∆+\∆′gα.
For any M ∈ ObF , µ ∈ (h′′)

∗
set Mµ = M ⊗C c′′µ, where c′′µ is the

1-dimensional h′′-module defined by the character µ − ρ. We define a
p-module structure on Mµ by putting r · Mµ = 0. Then a generalized
Verma module U (g)⊗U (p) M

µ has a unique maximal finite-dimensional
quotient which we denote by IndµM . Clearly one can consider Indµ as a
functor from the category F ′ to the category F . Geometrically IndµM
can be defined as Γ

(

L(Mµ)∗
)∗

where LN is a G-sheaf on G/P induced
by P -module N .

On the other hand one can construct a functor Invµ : F → F ′ by
putting Invµ M = {m ∈ M |rm = 0, hm = (µ − ρ) (h)m∀h ∈ h′′}.

Lemma 6.1. (a) For any M ∈ ObF ′, N ∈ ObF there is a canonical
isomorphism

Homg (IndµM, N) ≃ Homg′ (M, Invµ N) ;

(b) Invµ is exact on the left;
(c) Indµ is exact on the right;
(d) If M is indecomposable g′-module then IndµM is indecomposable

g-module.

Proof. To show (a) note that since N is finite dimensional

Homg (IndµM, N) ∼= Homg

(

U (g) ⊗U (p) Mµ, N
)

.
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On the other hand by Frobenius reciprocity

Homg

(

U (g) ⊗U (p) Mµ, N
)

∼= Homp (Mµ, N) .

Finally by definition of Mµ

Homp (Mµ, N) ∼= Homg′ (M, Invµ N) .

Statements (b) and (c) are trivial.
Let us prove (d). Assume that M is an indecomposable g′-module

and IndµM = N ′ ⊕ N ′′ with N ′, N ′′ 6= 0. As easily follows from (a)

Invµ IndµM ≃ M ≃ Invµ N ′ ⊕ Invµ N ′′.

This implies that Invµ N ′ ≃ M, Invµ N ′′ = 0. On the other hand M
generates IndµM , and therefore N ′ generates IndµM , which implies
N ′′ = 0. Contradiction. �

Next step is to construct subcategories in F and Fk such that the
functors Ind and Inv give an equivalence of these subcategories.

Let us fix some central character χ with #χ = k, and

cχ = ({a1 > · · · > ap} , {b1 < b2 < · · · < bq}) .

Let
µ = a1ε1 + · · · + apεp − b1δk+1 − · · · − bqδn ∈ (h′′)

∗
.

Let Fk (µ) be the full subcategory of Fk consisting of g′-modules, ir-
reducible subquotients L′

λ of which satisfy the condition (µ, λ) ∈ P+.
In the same way let Fχ (µ) be the full subcategory of Fχ consisting of
modules whose irreducible subquotients have the form L(µ,λ).

The next lemma is trivial and we leave the proof of it to the reader.

Lemma 6.2. (a) Let L′
λ ∈ ObFk (µ), then there is a surjection IndµL′

λ →
L(µ,λ);

(b) Let L(µ,λ) ∈ ObFχ (µ), then Invµ L(µ,λ) ≃ L′
λ;

(c) If M ∈ ObFχ (µ), then Invµ M = M (µ) = {m ∈ M |hm = (µ − ρ) (h) m∀h ∈ h′′}.

Now we are able to prove the following

Lemma 6.3. The functors Indµ and Invµ establish an equivalence of
the categories Fk (µ) and Fχ (µ).

Proof. Note that by Lemma 6.2 (c) Invµ is an exact functor on Fχ (µ).
Therefore by Lemma 6.2 (b) it maps a module from Fχ (µ) to a module
from Fk (µ) and it is faithful on Fχ (µ). Furthermore by Lemma 6.1
(a)N ≃Indµ Invµ N for any N ∈ ObFχ (µ).

On the other hand Lemma 6.1 (c) and Lemma 6.2 (a) imply that Indµ

is faithful on Fk (µ), and therefore by lemma 6.1 (a) InvµIndµM ≃ M
for any M ∈ ObFk (µ). Now to finish the proof we only have to show
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that IndµM ∈ ObFχ (µ) for any M ∈ ObFk (µ). Let M have irre-
ducible subquotients L′

λ1
, . . . , L′

λr
. Then P (IndµM ⊆ ∪r

i=1 (λi + P (U (n−))).
In particular, if Lν is an irreducible subquotient of IndµM , then ν =
λs − Σα∈∆+mαα for some s ≤ r, mα ∈ Z≥0. Furthermore, Lemma 6.1
(d) and Lemma 6.2 (a) imply that χν = χ. One can easily check that
the last two conditions together with ν ∈ P+ imply that ν = (µ, κ) for
some κ ∈ (P ′)

+
. Thus we have proved the lemma. �

Now we can proceed to the proof of theorem 3.6. Note that Fk =
∪µ→∞Fk (µ). Therefore we can try to get an equivalence functor as a
limit of Invµ as µ → ∞. Let us do it formally.

Let us fix a central character χ with #χ = k and cχ = ({1, . . . , p} , {p + 1, . . . , q}).
Let us fix a sequence µ(n) such that:

(1) µ(0) = pε1 + · · · + εp − (p + 1) δk+1 − · · · − (p + q) δn;
(2) µ(i) is either µ(i−1) + εs for some s ∈ {1, . . . , p} or µ(i−1) − δs for

some s ∈ {k + 1, . . . , n};
(3) c(i)

(

a(i), b(i)
)

=
({〈

µ(i), εs

〉

|1 ≤ s ≤ p
}

, {〈µ, δs〉 |k + 1 ≤ s ≤ n}
)

∈
Mp,q;

(4) a(i) ∪ b(i) = {a, . . . , a + p + q + 1} r {b} for some a and b ∈ Z.

Note that each c(i) is obtained from c(i−1) by shifting. Let χ(i) be the
central character with #χ(i) = k, cχ(i) = c(i). Let F (i) = Fχ(i) and let

Φ(i) : F (i) → F (i+1) be the functor T χ(i),χ(i+1)

E constructed in lemma 5.5
(a).

Lemma 6.4. Let M ∈ ObF (i)
(

µ(i)
)

. Then Φ(i) (M) ∈ ObF (i+1)
(

µ(i+1)
)

and Invµ(i)

(M) ≃ Invµ(i+1)

Φ(i)M .

Proof. Since all functors in question are exact it suffices to check the
first statement of lemma for an irreducible M = L(µ(i) ,λ). Indeed,

Φ(i)L(µ(i),λ) = L(µ(i+1),λ) ∈ ObF (i+1) (µ) ,

and
Invµ(i)

L(µ(i),λ) = Invµ(i+1)

L(µ(i+1) ,λ) = L′
λ.

To show that the second statement of lemma is true consider M ∈
ObF (i)

(

µ(i)
)

. Recall that Φ(i)M = T χ(i),χ(i+1)

E M ⊆ (M ⊗ E), where E
is either the standard g-module or its dual. Therefore

Invµ(i+1)

Φ(i)M ⊆ (M ⊗ E)
(

µ(i+1)
)

.

We claim that (M ⊗ E)
(

µ(i+1)
)

≃ dim M
(

µ(i)
)

as g′-modules. Indeed,
it is sufficient to check this claim for M = L(µ(i),λ). Assume that

µ(i+1) = µ(i) + εr, then E is the standard module. (The case µ(i+1) =
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µ(i)−δr and E is the dual to the standard module is completely similar).
All weights of M ⊗ E belong to P (M) + {ε1, . . . , εm, δ1, . . . , δn}. A
simple direct checking shows that for any ν ∈ P (M) one has µ + εs =
(

µ(i+1), λ
)

implies s = r and ν =
(

µ(i), λ
)

, and ν + δs 6=
(

µ(i+1), λ
)

.

Thus (M ⊗ E)
(

µ(i+1)
)

= pχ′ (M ⊗E)
(

µ(i+1)
)

≃ M
(

µ(i)
)

. �

Now we construct a functor Φ : Fχ → F ′
0 by putting

ΦM = Invµ(i)

◦Φ(i−1) ◦ · · · ◦ Φ(0)M

for sufficiently large i. More precisely one can choose i such that Φ(i−1)◦
· · · ◦Φ(0)M ∈ ObF (i)

(

µ(i)
)

. Lemma 6.4 implies that Φ is well defined.

Lemma 6.3 together with ∪iF
k
(

µ(i)
)

= Fk imply that Φ gives an
equivalence of categories.

7. Indecomposability of Fχ

What remains is to prove theorem 3.7. Theorem 3.6 implies that it
is sufficient to prove indecomposability for Fχρ and g = gl (n|n).

Lemma 7.1. Let λ ∈ P+, α ∈ ∆1 such that 〈λ, α〉 = 0 and λ + α ∈
P+. Then there is an indecomposable module which has subquotients
isomorphic to Lλ and Lλ+α.

Proof. One can assume without lost of generality that α ∈ ∆−
1 . It was

shown in [?] that the Kac module Vλ has subquotients Lλ and Lλ+α.
Since Vλ is indecomposable the statement is proved. �

Now theorem 3.7 will follow immediately from lemma 7.1 and the
following simple combinatorial statement.

Lemma 7.2. Let λ, µ ∈ P+ and χλ = χµ = χρ′. Then one can
find a sequence α1, . . . , αs ∈ ∆′

1 such that 〈λ + α1 + · · · + αi, αi+1〉 =
0, λ + α1 + · · · + αi ∈ (P+)

′
for any i < s and λ + α1 + · · · + αs = µ.

Proof. Let ‖λ − µ‖ = Σk
i=1| 〈λ − µ, εi〉 |. We prove the statement by

induction on ‖λ − µ‖. Let us choose the minimal i such that 〈λ, εi〉 6=
〈µ, εi〉. We have two cases

(1) If 〈λ, εi〉 < 〈µ, εi〉, then λ′ = λ+εi−δi ∈ (P+)
′
and 〈λ, εi − δi〉 =

0. Since ‖λ′ − µ‖ = ‖λ − µ‖ − 1, the statement is true for λ′

and µ. But then it is clearly true for λ and µ;
(2) If 〈λ, εi〉 > 〈µ, εi〉, then µ′ = µ+εi−δi ∈ (P+)

′
and 〈µ, εi − δi〉 =

0. Since ‖λ−µ′‖ = ‖λ−µ‖−1, the statement is true for λ and
µ′. But then it is clearly true for λ and µ.

�
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8. Some applications

Let us apply theorem 3.6 to the problem of calculating of the char-
acter of Lλ. It was shown in [?] that the character can be written as
the infinite linear combination:

chLλ = Σµ≤λaλµ chVµ.

Here the coefficient aλµ is defined as the multiplicity of Vµ in a resolu-
tion of Lλ by Kac modules. Therefore if aλµ 6= 0 then Lλ and Lµ should
belong to the same block. Moreover, the coefficients are invariant with
respect to an equivalence of blocks. Thus, by theorem 3.6 it is sufficient
find the coefficients aλµ only for the most atypical block Fχρ for the Lie
superalgebra g = gl (n|n). This simplifies the problem combinatorially
because the most atypical weight λ is defined only by n parameters.
Indeed, λ = λ1ε1 + · · ·+λnεn −λnδ1 −· · ·−λ1δn, where λ1, . . . , λn ∈ Z

and λ1 > · · · > λn. Denote by Q the set of all such (λ1, . . . , λn). The
algorithm for calculating aλµ defined in [?] can be reformulated in the
following way.

We identify λ with (λ1, . . . , λn) and consider a free Z [q]-module H
with basis λ ∈ Q. Let di (λ1, . . . , λn) = (λ1, . . . , λi − 1, . . . , λn) and
[f (q)]+ = f (q)−f (0) for any f (q) ∈ Z [q]. Define Z [q]-linear operators
S1, . . . , Sn on H by the following recurrent relation:

Sn (λ) = qdn (λ) ;

Si (λ) = qdi (λ) +
[

q−1Si (di (λ))
]

+
if di (λ) ∈ M ;

Si (λ) = qdi (Si−1 (λ)) if di (λ) /∈ M.

Let S = Πn
i=1 (1 + Si)

−1 and sλ,µ (q) ∈ Z [q] be the matrix coefficients
of the operator S in the basis {λ}. Then aλ,µ = sλ,µ (−1).
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