PROBLEM SET MATH 261A

1. Let G be a connected simply connected Lie group, \mathfrak{g} be its Lie algebra. Check that the commutator [G, G] is a connected closed subgroup with Lie algebra $[\mathfrak{g}, \mathfrak{g}]$.

2. Let \mathfrak{g} be a semisimple Lie algebra, V be a faithful representation of \mathfrak{g} , $\{e_1, \ldots, e_n\}$ and $\{f_1, \ldots, f_n\}$ be bases in \mathfrak{g} dual with respect to the form $B_V(X, Y) = \operatorname{tr}_V XY$. The Casimir operator in V is defined by

$$C_V = \sum_{i=1}^n e_i f_i.$$

Define the operator γ : Hom_k ($\Lambda^{j}\mathfrak{g}, V$) \rightarrow Hom_k ($\Lambda^{j-1}\mathfrak{g}, V$) by the formula

$$\gamma c(x_1, \dots, x_{j-1}) = \sum_{i=1}^n e_i c(f_i, x_1, \dots, x_{j-1}).$$

Let $d : \operatorname{Hom}_k(\Lambda^{j-1}\mathfrak{g}, V) \to \operatorname{Hom}_k(\Lambda^j\mathfrak{g}, V)$ be the differential in the cohomology complex. Check that

$$\gamma \circ d + d \circ \gamma = C_V.$$

3. Let V be an irreducible non-trivial representation of a semisimple Lie algebra \mathfrak{g} . Prove that $H^j(\mathfrak{g}; V) = 0$ for all j. (You have to modify the statement of problem 2 if V is not faithful).

4. Evaluate $H^{j}(\mathfrak{g};k)$ for $\mathfrak{g} = \mathrm{sl}_{2}(k)$.

5. Let \mathfrak{g} be a simple Lie algebra over algebraically closed field. Check that two invariant forms on \mathfrak{g} are proportional.

Date: February 25, 2006.