PROBLEM SET 2 MATH 261A

1. Check that F_4 and E_8 satisfy axioms of root systems.

2. Prove that a semisimple Lie algebra \mathfrak{g} is simple if and only if the root system of \mathfrak{g} is indecomposable.

3. Let \mathfrak{g} be a semisimple Lie algebra, \mathfrak{h} be a Cartan subalgebra. For each root α define

$$s_{\alpha} = \exp\left(\operatorname{ad}_{X_{\alpha}}\right) \exp\left(-\operatorname{ad}_{Y_{\alpha}}\right) \exp\left(\operatorname{ad}_{X_{\alpha}}\right).$$

Prove that $s_{\alpha}(\mathfrak{h}) = \mathfrak{h}$ and

$$\langle \lambda, s_{\alpha}(h) \rangle = \langle r_{\alpha}(\lambda), h \rangle$$

for any $h \in \mathfrak{h}$, $\lambda \in \mathfrak{h}^*$, here r_{α} denotes the reflection in α^{\perp} .

4. Prove that among three leg diagrams only E_6, E_7, E_8 are Dynkin diagrams.

5. Prove that among diagrams with one double edge only B_n , C_n and F_4 are Dynkin diagrams.

Date: March 9, 2006.