FIELDS ADMITTING NONTRIVIAL STRONG ORDERED EULER CHARACTERISTICS ARE QUASIFINITE

THOMAS SCANLON

1. Introduction and Background

The note contains the details of an assertion made in [1] to the effect that fields admitting a nontrivial strong ordered Euler characteristic are quasifinite. In this section we recall the relevant definitions and in the next section we complete the proof.

Recall that a field K is quasifinite if K is perfect and its absolute Galois group is isomorphic to the profinite completion of \mathbb{Z}. In particular, a finite field is quasifinite. A strong ordered Euler characteristic on the field K is a function $\chi: \operatorname{Def}(K) \rightarrow R$ from the set of definable (in the language of rings) subsets of (any Cartesian power) of K to a partially ordered ring R having image amongst the nonnegative elements of R and satisfying $\chi(X)=\chi(Y)$ for X and Y definably isomorphic, $\chi(X \times Y)=$ $\chi(X) \cdot \chi(Y), \chi(X \cup Y)=\chi(X)+\chi(Y)$ for $X \cap Y=\varnothing$, and $\chi(E)=c \cdot \chi(B)$ if $f: E \rightarrow B$ is a definable function and $c=\chi\left(f^{-1}\{b\}\right)$ for every $b \in B$. The Euler characteristic is nontrivial if $0<1$ in R and the image of χ is not just $\{0\}$.

The main theorem of this note is the following:
Theorem 1. Any field admitting a nontrivial strong ordered Euler characteristic is quasifinite.

2. Proofs

As the conclusion of Theorem 1 holds for finite fields, we may restrict attention to infinite fields. Throughout the rest of this note K denotes an infinite field given together with a nontrivial strong ordered Euler characteristic $\chi: \operatorname{Def}(K) \rightarrow R$.
Lemma 1. K is perfect.
Proof. If K has characteristic zero, then there is nothing to prove. So we may assume that the characteristic of K is $p>0$. The map $x \mapsto x^{p}$ on K is a definable bijection so $\chi([K])=\chi\left(\left[K^{p}\right]\right)$. The inclusion $K^{p} \hookrightarrow K$ shows that $\chi\left(\left[K^{p}\right]\right) \leq \chi([K])$ with equality only if $K=K^{p}$. Thus, $K=K^{p}$. That is, K is perfect as claimed.

We now aim to show by a counting argument that for each positive integer n there is a unique extension of K of degree n. We need a simple combinatorial lemma.
Lemma 2. For a multiïndex $\alpha \in \mathbb{Z}_{+}{ }^{\omega}$ define $w(\alpha):=\sum_{n=0}^{\infty} n \alpha_{n}$. Then for any natural number N we have $\sum_{\{\alpha: w(\alpha)=N\}} \prod_{n=1}^{\infty} \frac{1}{n^{\alpha_{n}\left(\alpha_{n}!\right)}}=1$.

[^0]Proof.

$$
\begin{aligned}
\sum_{N=0}^{\infty}\left(\sum_{\{\alpha: w(\alpha)=N\}} \prod_{n=1}^{\infty} \frac{1}{n^{\alpha_{n}}\left(\alpha_{n}!\right)}\right) X^{N} & =\prod_{n=1}^{\infty}\left(\sum_{m=0}^{\infty} \frac{1}{n^{m}(m!)} X^{n m}\right) \\
& =\prod_{n=1}^{\infty} \exp \left(\frac{X^{n}}{n}\right) \\
& =\exp \left(\sum_{n=1}^{\infty} \frac{1}{n} X^{n}\right) \\
& =\exp \left(\log \left(\frac{1}{1-X}\right)\right) \\
& =\frac{1}{1-X} \\
& =\sum_{N=0}^{\infty} X^{N}
\end{aligned}
$$

Equating the coëfficients of X^{N} we obtain the statement of the lemma.

Lemma 3. Let $R^{\prime}:=R \otimes \mathbb{Q}$. There is a unique structure of a partially ordered ring on R^{\prime} for which $\nu: R \rightarrow R^{\prime}$ is morphism of partially ordered ring. Moreover, $R^{\prime} \neq 0$.

Proof. The positive elements in R^{\prime} are exactly those of the form $x \otimes r$ with $x>0$ in R and $r>0$ in \mathbb{Q}. The rest of the proof is routine.

We let $\tilde{\chi}:=\nu \circ \chi: \operatorname{Def}(K) \rightarrow R^{\prime}$.
We define $I_{n}:=\left\{\left(a_{0}, \ldots, a_{n-1}\right) \in K^{n}: X^{n}+\sum_{i=0}^{n-1} a_{i} X\right.$ is irreducible over $\left.K\right\}$.
Lemma 4. For any positive integer n we have $\tilde{\chi}\left(\left[I_{n}\right]\right)=\frac{1}{n} \tilde{\chi}([K])^{n}+O\left(\tilde{\chi}([K])^{n-1}\right)$.

Proof. We prove the lemma by induction on n with the case of $n=1$ being trivial as $I_{1}=K$.

For each n-tuple $a=\left(a_{0}, \ldots, a_{n-1}\right) \in K^{n}$, let $\alpha(a): \mathbb{Z}_{+} \rightarrow \omega$ be defined by $\alpha(a)_{m}:=$ the number of irreducible factors of $X^{n}+\sum_{i=0}^{n-1} a_{i} X^{i}$ of degree m. Let $\beta(a): \mathbb{Z}_{+}^{2} \rightarrow \omega$ be defined by $\beta(a)(m, r):=$ the number of irreducible factors of $X^{n}+\sum_{i=0}^{n-1} a_{i} X^{i}$ of degree m appearing with multiplicity exactly r.

For a given function $f: \mathbb{Z}_{+} \rightarrow \omega$ with $w(f)=n$, let $P_{f}:=\left\{a \in K^{n}: \alpha(a)=f\right\}$. Likewise, for a given $g: \mathbb{Z}_{+}^{2} \rightarrow \omega$ with $\tilde{w}(g):=\sum_{m=1, r=1}^{\infty} r \cdot m \cdot g(r, m)=n$, let $Q_{g}:=\left\{a \in K^{n}: \beta(a)=g\right\}$. We define $u(g):=\sum_{m=1, r=1}^{\infty} m \cdot g(r, m)$.

Given g with $\tilde{w}(g)=n$, let $\psi_{g}: \prod_{m, r} I_{m}^{g(m, r)} \rightarrow K^{n}$ be the coëfficient map associated to the composition of multiplication of polynomials with exponentiation of polynomials to the power r. Note that the image of ψ_{g} is Q_{g}. Moreover, ψ_{g} is $\prod_{m, r} g(m, r)$!-to-one over it image. Therefore, $\left(\prod_{m, r} g(m, r)!\right) \chi\left(\left[Q_{g}\right]\right)=$ $\prod_{m, r} \chi\left(\left[I_{m}\right]\right)^{g(m, r)}=\prod_{m, r} \frac{1}{m^{g(m, r)}} \chi([K])^{u(g)}+O\left(\chi([K])^{u(g)-1}\right.$.

We have $K^{n}=I_{n} \cup \coprod_{\{g: \tilde{w}(g)=n, g(n, 1)=0\}} Q_{g}$. Thus,

$$
\begin{aligned}
\chi\left(\left[I_{n}\right]\right) & =\chi([K])^{n}-\sum_{\{g: \tilde{w}(g)=n, g(n, 1)=0\}}\left(\prod_{m, r} \frac{1}{m^{g(m, r)}(g(m, r)!)}\right) \chi([K])^{u(g)}+O\left(\chi([K])^{n-1}\right) \\
& =\left(1-\sum_{\{f: w(f)=n, f(n)=0\}} \frac{1}{m^{f(m)}(f(m)!)}\right) \chi([K])^{n}+O\left(\chi([K])^{n-1}\right) \\
& =\frac{1}{n} \chi([K])^{n}+O\left(\chi([K])^{n-1}\right)
\end{aligned}
$$

as claimed.
Lemma 5. Let L / K be an extension of degree n. Let $S:=\left\{a \in K^{n}: X^{n}+\right.$ $\sum_{i=0}^{n-1} a_{i} X^{i}$ is the monic minimal polynomial of some $\left.a \in L\right\}$. Then $\tilde{\chi}([S]) \geq$ $\frac{1}{n} \tilde{\chi}([K])^{n}+O\left(\chi([K])^{n-1}\right)$.

Proof. Let $B:=\{b \in L: K(c) \neq L\}$. As the extension L / K is finite and separable, $B=\bigcup K \leq M<L M$ where the union runs over the finitely many proper subfields of L containing K. Each of these is a finite dimensional vector space over K of dimension strictly less than n. Thus, $\tilde{\chi}([L \backslash B])=\chi([K])^{n}+O\left(\tilde{\chi}([K])^{n-1}\right)$.

For each $1 \leq s \leq n$ let $E_{s}:=\{a \in L \backslash B: a$ has exactly s conjugates in L over $K\}$. Let $f:(L \backslash B) \rightarrow K^{n}$ be defined by $f(a)=\left(b_{0}, \ldots, b_{n-1}\right)$ where $X^{n}+\sum_{i=0}^{n-1} b_{i} X^{i}$ is the monic minimal polynomial of a over K. Note that when restricted to E_{s}, the function f is s-to-one. Then $S=\coprod_{s=1}^{n} f\left(E_{s}\right)$. Thus, $\tilde{\chi}([S])=\sum_{s=1}^{n} \frac{1}{s} \tilde{\chi}\left(\left[E_{s}\right]\right) \geq$ $\sum_{s=1}^{n} \frac{1}{n} \chi\left(\left[E_{s}\right]\right)=\frac{1}{n} \chi([L \backslash B])=\frac{1}{n} \tilde{\chi}([K])^{n}+O\left(\tilde{\chi}([K])^{n-1}\right)$ as claimed.
Proof of main theorem: Combining the last two lemmata we see that there is a unique (Galois!) field extension of each degree.

References

[1] J. Krajíček and T. Scanlon, Combinatorics with definable sets: Grothendieck rings and Euler characteristics, Bulletin of Symbolic Logic, (to appear).
E-mail address: scanlon@math.berkeley.edu
University of California, Berkeley, Department of Mathematics, Evans Hall, BerkeLEY, CA 94720, USA

[^0]: Date: 19 June 2000.

