FIELDS ADMITTING NONTRIVIAL STRONG ORDERED EULER CHARACTERISTICS ARE QUASIFINITE

THOMAS SCANLON

1. INTRODUCTION AND BACKGROUND

The note contains the details of an assertion made in [1] to the effect that fields admitting a nontrivial strong ordered Euler characteristic are quasifinite. In this section we recall the relevant definitions and in the next section we complete the proof.

Recall that a field K is quasifinite if K is perfect and its absolute Galois group is isomorphic to the profinite completion of Z. In particular, a finite field is quasifinite. A strong ordered Euler characteristic on the field K is a function $\chi : \text{Def}(K) \to R$ from the set of definable (in the language of rings) subsets of (any Cartesian power) of K to a partially ordered ring R having image amongst the nonnegative elements of R and satisfying $\chi(X) = \chi(Y)$ for X and Y definably isomorphic, $\chi(X \times Y) =$ $\chi(X) \cdot \chi(Y), \ \chi(X \cup Y) = \chi(X) + \chi(Y)$ for $X \cap Y = \emptyset$, and $\chi(E) = c \cdot \chi(B)$ if $f : E \to B$ is a definable function and $c = \chi(f^{-1}{b})$ for every $b \in B$. The Euler characteristic is nontrivial if 0 < 1 in R and the image of χ is not just $\{0\}$.

The main theorem of this note is the following:

Theorem 1. Any field admitting a nontrivial strong ordered Euler characteristic is quasifinite.

2. Proofs

As the conclusion of Theorem 1 holds for finite fields, we may restrict attention to infinite fields. Throughout the rest of this note K denotes an infinite field given together with a nontrivial strong ordered Euler characteristic $\chi : \text{Def}(K) \to R$.

Lemma 1. K is perfect.

Proof. If K has characteristic zero, then there is nothing to prove. So we may assume that the characteristic of K is p > 0. The map $x \mapsto x^p$ on K is a definable bijection so $\chi([K]) = \chi([K^p])$. The inclusion $K^p \hookrightarrow K$ shows that $\chi([K^p]) \leq \chi([K])$ with equality only if $K = K^p$. Thus, $K = K^p$. That is, K is perfect as claimed. \Box

We now aim to show by a counting argument that for each positive integer n there is a unique extension of K of degree n. We need a simple combinatorial lemma.

Lemma 2. For a multiindex $\alpha \in \mathbb{Z}_+^{\omega}$ define $w(\alpha) := \sum_{n=0}^{\infty} n\alpha_n$. Then for any natural number N we have $\sum_{\{\alpha:w(\alpha)=N\}} \prod_{n=1}^{\infty} \frac{1}{n^{\alpha_n}(\alpha_n!)} = 1$.

Date: 19 June 2000.

Proof.

$$\begin{split} \sum_{N=0}^{\infty} (\sum_{\{\alpha:w(\alpha)=N\}} \prod_{n=1}^{\infty} \frac{1}{n^{\alpha_n}(\alpha_n!)}) X^N &= \prod_{n=1}^{\infty} (\sum_{m=0}^{\infty} \frac{1}{n^m(m!)} X^{nm}) \\ &= \prod_{n=1}^{\infty} \exp(\frac{X^n}{n}) \\ &= \exp(\sum_{n=1}^{\infty} \frac{1}{n} X^n) \\ &= \exp(\log(\frac{1}{1-X})) \\ &= \prod_{N=0}^{\infty} X^N \end{split}$$

Equating the coëfficients of X^N we obtain the statement of the lemma.

Lemma 3. Let $R' := R \otimes \mathbb{Q}$. There is a unique structure of a partially ordered ring on R' for which $\nu : R \to R'$ is morphism of partially ordered ring. Moreover, $R' \neq 0$.

Proof. The positive elements in R' are exactly those of the form $x \otimes r$ with x > 0 in R and r > 0 in \mathbb{Q} . The rest of the proof is routine.

We let $\tilde{\chi} := \nu \circ \chi : \text{Def}(K) \to R'.$ We define $I_n := \{(a_0, \dots, a_{n-1}) \in K^n : X^n + \sum_{i=0}^{n-1} a_i X \text{ is irreducible over } K\}.$ Lemma 4. For any positive integer n we have $\tilde{\chi}([I_n]) = \frac{1}{n} \tilde{\chi}([K])^n + O(\tilde{\chi}([K])^{n-1}).$

Proof. We prove the lemma by induction on n with the case of n = 1 being trivial as $I_1 = K$.

For each *n*-tuple $a = (a_0, \ldots, a_{n-1}) \in K^n$, let $\alpha(a) : \mathbb{Z}_+ \to \omega$ be defined by $\alpha(a)_m :=$ the number of irreducible factors of $X^n + \sum_{i=0}^{n-1} a_i X^i$ of degree *m*. Let $\beta(a) : \mathbb{Z}^2_+ \to \omega$ be defined by $\beta(a)(m, r) :=$ the number of irreducible factors of $X^n + \sum_{i=0}^{n-1} a_i X^i$ of degree *m* appearing with multiplicity exactly *r*.

For a given function $f: \mathbb{Z}_+ \to \omega$ with w(f) = n, let $P_f := \{a \in K^n : \alpha(a) = f\}$. Likewise, for a given $g: \mathbb{Z}_+^2 \to \omega$ with $\tilde{w}(g) := \sum_{m=1,r=1}^{\infty} r \cdot m \cdot g(r,m) = n$, let $Q_g := \{a \in K^n : \beta(a) = g\}$. We define $u(g) := \sum_{m=1,r=1}^{\infty} m \cdot g(r,m)$.

Given g with $\tilde{w}(g) = n$, let $\psi_g : \prod_{m,r} I_m^{g(m,r)} \to K^n$ be the coëfficient map associated to the composition of multiplication of polynomials with exponentiation of polynomials to the power r. Note that the image of ψ_g is Q_g . Moreover, ψ_g is $\prod_{m,r} g(m,r)$!-to-one over it image. Therefore, $(\prod_{m,r} g(m,r)!)\chi([Q_g]) =$ $\prod_{m,r} \chi([I_m])^{g(m,r)} = \prod_{m,r} \frac{1}{m^{g(m,r)}}\chi([K])^{u(g)} + O(\chi([K])^{u(g)-1}.$

 $\mathbf{2}$

We have $K^n = I_n \stackrel{\cdot}{\cup} \coprod_{\{q:\tilde{w}(q)=n,q(n,1)=0\}} Q_g$. Thus,

$$\begin{split} \chi([I_n]) &= \chi([K])^n - \sum_{\{g: \tilde{w}(g) = n, g(n, 1) = 0\}} (\prod_{m, r} \frac{1}{m^{g(m, r)}(g(m, r)!)}) \chi([K])^{u(g)} + O(\chi([K])^{n-1}) \\ &= (1 - \sum_{\{f: w(f) = n, f(n) = 0\}} \frac{1}{m^{f(m)}(f(m)!)}) \chi([K])^n + O(\chi([K])^{n-1}) \\ &= \frac{1}{n} \chi([K])^n + O(\chi([K])^{n-1}) \\ \text{as claimed.} \end{split}$$

as claimed.

Lemma 5. Let L/K be an extension of degree n. Let $S := \{a \in K^n : X^n +$ $\sum_{i=0}^{n-1} a_i X^i \text{ is the monic minimal polynomial of some } a \in L\}. \text{ Then } \tilde{\chi}([S]) \geq \frac{1}{n} \tilde{\chi}([K])^n + O(\chi([K])^{n-1}).$

Proof. Let $B := \{b \in L : K(c) \neq L\}$. As the extension L/K is finite and separable, $B = \bigcup K \leq M \leq LM$ where the union runs over the finitely many proper subfields of L containing K. Each of these is a finite dimensional vector space over K of dimension strictly less than n. Thus, $\tilde{\chi}([L \setminus B]) = \chi([K])^n + O(\tilde{\chi}([K])^{n-1}).$

For each $1 \le s \le n$ let $E_s := \{a \in L \setminus B : a \text{ has exactly } s \text{ conjugates in } L \text{ over } K\}.$ Let $f: (L \setminus B) \to K^n$ be defined by $f(a) = (b_0, \ldots, b_{n-1})$ where $X^n + \sum_{i=0}^{n-1} b_i X^i$ is the monic minimal polynomial of a over K. Note that when restricted to E_s , the function f is s-to-one. Then $S = \coprod_{s=1}^{n} f(E_s)$. Thus, $\tilde{\chi}([S]) = \sum_{s=1}^{n} \frac{1}{s} \tilde{\chi}([E_s]) \geq \sum_{s=1}^{n} \frac{1}{n} \chi([E_s]) = \frac{1}{n} \chi([L \setminus B]) = \frac{1}{n} \tilde{\chi}([K])^n + O(\tilde{\chi}([K])^{n-1})$ as claimed. \Box

Proof of main theorem: Combining the last two lemmata we see that there is a unique (Galois!) field extension of each degree. \dashv

References

[1] J. KRAJÍČEK and T. SCANLON, Combinatorics with definable sets: Grothendieck rings and Euler characteristics, Bulletin of Symbolic Logic, (to appear). E-mail address: scanlon@math.berkeley.edu

UNIVERSITY OF CALIFORNIA, BERKELEY, DEPARTMENT OF MATHEMATICS, EVANS HALL, BERKE-LEY, CA 94720, USA