
FIELDS ADMITTING NONTRIVIAL STRONG ORDERED
EULER CHARACTERISTICS ARE QUASIFINITE

THOMAS SCANLON

1. Introduction and Background

The note contains the details of an assertion made in [1] to the effect that fields
admitting a nontrivial strong ordered Euler characteristic are quasifinite. In this
section we recall the relevant definitions and in the next section we complete the
proof.

Recall that a field K is quasifinite if K is perfect and its absolute Galois group is
isomorphic to the profinite completion of Z. In particular, a finite field is quasifinite.
A strong ordered Euler characteristic on the field K is a function χ : Def(K) → R
from the set of definable (in the language of rings) subsets of (any Cartesian power)
of K to a partially ordered ring R having image amongst the nonnegative elements
of R and satisfying χ(X) = χ(Y ) for X and Y definably isomorphic, χ(X × Y ) =
χ(X) · χ(Y ), χ(X ∪ Y ) = χ(X) + χ(Y ) for X ∩ Y = ∅, and χ(E) = c · χ(B) if
f : E → B is a definable function and c = χ(f−1{b}) for every b ∈ B. The Euler
characteristic is nontrivial if 0 < 1 in R and the image of χ is not just {0}.

The main theorem of this note is the following:

Theorem 1. Any field admitting a nontrivial strong ordered Euler characteristic
is quasifinite.

2. Proofs

As the conclusion of Theorem 1 holds for finite fields, we may restrict attention
to infinite fields. Throughout the rest of this note K denotes an infinite field given
together with a nontrivial strong ordered Euler characteristic χ : Def(K) → R.

Lemma 1. K is perfect.

Proof. If K has characteristic zero, then there is nothing to prove. So we may
assume that the characteristic of K is p > 0. The map x 7→ xp on K is a definable
bijection so χ([K]) = χ([Kp]). The inclusionKp ↪→ K shows that χ([Kp]) ≤ χ([K])
with equality only if K = Kp. Thus, K = Kp. That is, K is perfect as claimed. �

We now aim to show by a counting argument that for each positive integer n
there is a unique extension of K of degree n. We need a simple combinatorial
lemma.

Lemma 2. For a multïındex α ∈ Z+
ω define w(α) :=

∑∞
n=0 nαn. Then for any

natural number N we have
∑

{α:w(α)=N}
∏∞

n=1
1

nαn (αn!) = 1.
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Proof.

∞∑
N=0

(
∑

{α:w(α)=N}

∞∏
n=1

1
nαn(αn!)

)XN =
∞∏

n=1

(
∞∑

m=0

1
nm(m!)

Xnm)

=
∞∏

n=1

exp(
Xn

n
)

= exp(
∞∑

n=1

1
n
Xn)

= exp(log(
1

1−X
))

=
1

1−X

=
∞∑

N=0

XN

Equating the coëfficients of XN we obtain the statement of the lemma. �

Lemma 3. Let R′ := R ⊗ Q. There is a unique structure of a partially ordered
ring on R′ for which ν : R → R′ is morphism of partially ordered ring. Moreover,
R′ 6= 0.

Proof. The positive elements in R′ are exactly those of the form x⊗ r with x > 0
in R and r > 0 in Q. The rest of the proof is routine. �

We let χ̃ := ν ◦ χ : Def(K) → R′.
We define In := {(a0, . . . , an−1) ∈ Kn : Xn +

∑n−1
i=0 aiX is irreducible over K}.

Lemma 4. For any positive integer n we have χ̃([In]) = 1
n χ̃([K])n+O(χ̃([K])n−1).

Proof. We prove the lemma by induction on n with the case of n = 1 being trivial
as I1 = K.

For each n-tuple a = (a0, . . . , an−1) ∈ Kn, let α(a) : Z+ → ω be defined by
α(a)m := the number of irreducible factors of Xn +

∑n−1
i=0 aiX

i of degree m. Let
β(a) : Z2

+ → ω be defined by β(a)(m, r) := the number of irreducible factors of
Xn +

∑n−1
i=0 aiX

i of degree m appearing with multiplicity exactly r.
For a given function f : Z+ → ω with w(f) = n, let Pf := {a ∈ Kn : α(a) = f}.

Likewise, for a given g : Z2
+ → ω with w̃(g) :=

∑∞
m=1,r=1 r ·m · g(r,m) = n, let

Qg := {a ∈ Kn : β(a) = g}. We define u(g) :=
∑∞

m=1,r=1m · g(r,m).

Given g with w̃(g) = n, let ψg :
∏

m,r I
g(m,r)
m → Kn be the coëfficient map

associated to the composition of multiplication of polynomials with exponentia-
tion of polynomials to the power r. Note that the image of ψg is Qg. More-
over, ψg is

∏
m,r g(m, r)!-to-one over it image. Therefore, (

∏
m,r g(m, r)!)χ([Qg]) =∏

m,r χ([Im])g(m,r) =
∏

m,r
1

mg(m,r)χ([K])u(g) +O(χ([K])u(g)−1.
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We have Kn = In
·
∪

∐
{g:w̃(g)=n,g(n,1)=0}Qg. Thus,

χ([In]) = χ([K])n −
∑

{g:w̃(g)=n,g(n,1)=0}

(
∏
m,r

1
mg(m,r)(g(m, r)!)

)χ([K])u(g) +O(χ([K])n−1)

= (1−
∑

{f :w(f)=n,f(n)=0}

1
mf(m)(f(m)!)

)χ([K])n +O(χ([K])n−1)

=
1
n
χ([K])n +O(χ([K])n−1)

as claimed. �

Lemma 5. Let L/K be an extension of degree n. Let S := {a ∈ Kn : Xn +∑n−1
i=0 aiX

i is the monic minimal polynomial of some a ∈ L}. Then χ̃([S]) ≥
1
n χ̃([K])n +O(χ([K])n−1).

Proof. Let B := {b ∈ L : K(c) 6= L}. As the extension L/K is finite and separable,
B =

⋃
K ≤M < LM where the union runs over the finitely many proper subfields

of L containing K. Each of these is a finite dimensional vector space over K of
dimension strictly less than n. Thus, χ̃([L \B]) = χ([K])n +O(χ̃([K])n−1).

For each 1 ≤ s ≤ n let Es := {a ∈ L\B : a has exactly s conjugates in L overK}.
Let f : (L \ B) → Kn be defined by f(a) = (b0, . . . , bn−1) where Xn +

∑n−1
i=0 biX

i

is the monic minimal polynomial of a over K. Note that when restricted to Es, the
function f is s-to-one. Then S =

∐n
s=1 f(Es). Thus, χ̃([S]) =

∑n
s=1

1
s χ̃([Es]) ≥∑n

s=1
1
nχ([Es]) = 1

nχ([L \B]) = 1
n χ̃([K])n +O(χ̃([K])n−1) as claimed. �

Proof of main theorem: Combining the last two lemmata we see that there is a
unique (Galois!) field extension of each degree. a
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