Groups in the theory of compact complex manifolds

Thomas Scanlon

University of California, Berkeley

III Encuentro de la Teoría de Modelos Villa de Leyva, Colombia 18 August 2005

Thomas Scanlon

University of California, Berkeley

Higher rank groups

Questions

Manifolds as structures

Definition

If *M* is a complex manifold, then a subset $X \subseteq M$ is analytic if for any point $x \in M$ there are an open neighborhood $x \in U \subseteq M$ and a holomorphic function $f : U \to \mathbb{C}^m$ for which $X \cap U = \{z \in U \mid f(z) = \mathbf{0}\}.$

Thomas Scanlon

University of California, Berkeley

Manifolds as structures

Definition

If *M* is a complex manifold, then a subset $X \subseteq M$ is analytic if for any point $x \in M$ there are an open neighborhood $x \in U \subseteq M$ and a holomorphic function $f : U \to \mathbb{C}^m$ for which $X \cap U = \{z \in U \mid f(z) = \mathbf{0}\}.$

Definition

The structure *CCM* is the multisorted structure having a sort \underline{M} for each compact complex manifold M for which for each finite sequence of basic sorts, $\underline{M_1}, \ldots, \underline{M_n}$, and analytic subset $X \subseteq M_1 \times \cdots \times M_n$ there is a basic relation \underline{X} on the product of sorts $M_1 \times \cdots \times M_n$ to be interpreted by X.

Thomas Scanlon

・ロト ・回ト ・ヨト ・

Compact complex manifolds as models

Main theorem

Strongly minimal groups

Higher rank groups

Questions

Basic model theory of CCM

• CCM eliminates quantifiers.

Thomas Scanlon

University of California, Berkeley

- CCM eliminates quantifiers.
- Sort by sort, *CCM* has finite Morley rank and for any analytic set X we have $RM(X) \le U(X) \le dim(X)$ where dim is the complex dimension.

Thomas Scanlon

• CCM eliminates quantifiers.

• Sort by sort, \mathcal{CCM} has finite Morley rank and for any analytic set X we have $RM(X) \leq U(X) \leq \dim(X)$ where dim is the complex dimension.

• CCM is \aleph_1 -compact.

Thomas Scanlon

• Sort by sort, CCM has finite Morley rank and for any analytic set X we have $RM(X) \le U(X) \le \dim(X)$ where dim is the complex dimension.

• CCM is \aleph_1 -compact.

• The language we have set for \mathscr{CM} has cardinality 2^{\aleph_0} . For some compact complex manifolds M it is possible to find a countable reduct \mathscr{L} so that the \mathscr{L}_M -definable sets (*ie* with parameters from M) in all the Cartesian powers of M coincide with our original class of definable sets. In general, this is not possible.

Questions

Basic model theory of CCM

• CCM is \aleph_1 -compact.

• The language we have set for \mathscr{CM} has cardinality 2^{\aleph_0} . For some compact complex manifolds M it is possible to find a countable reduct \mathscr{L} so that the \mathscr{L}_M -definable sets (*ie* with parameters from M) in all the Cartesian powers of M coincide with our original class of definable sets. In general, this is not possible.

• Given a strongly minimal set X in CCM, possibly after removing finitely many points, X with the traces of analytic sets on its Cartesian powers as the closed sets is a Zariski geometry.

• Given a strongly minimal set X in CCM, possibly after removing finitely many points, X with the traces of analytic sets on its Cartesian powers as the closed sets is a Zariski geometry.

• Complex algebraic geometry lives in \mathscr{CM} in the sense that the complex projective line $\mathbb{P}^1(\mathbb{C})$ is a compact complex manifold and $\mathbb{C} = \mathbb{P}^1(\mathbb{C}) \smallsetminus \{\infty\}$ is a definable set and the field operations are definable. Moreover, by Chow's Theorem the induced structure on \mathbb{C} is just that of its field structure with all the elements named.

• Complex algebraic geometry lives in \mathscr{CCM} in the sense that the complex projective line $\mathbb{P}^1(\mathbb{C})$ is a compact complex manifold and $\mathbb{C}=\mathbb{P}^1(\mathbb{C})\smallsetminus\{\infty\}$ is a definable set and the field operations are definable. Moreover, by Chow's Theorem the induced structure on \mathbb{C} is just that of its field structure with all the elements named.

• While *CCM* does not eliminate imaginaries, the natural expansion to *A*, whose sorts are the compact complex analytic spaces, does.

The question

Question

Let $\mathscr{A}' \succeq \mathscr{A}$ be a model of the theory of \mathscr{A} . What groups are interpretable in \mathscr{A}' ?

Thomas Scanlon

University of California, Berkeley

Image: A match a ma

An answer

Theorem (Pillay-Scanlon)

If G is a group interpretable in \mathscr{A} , then there are a compact complex Lie group T, a linear algebraic group L over \mathbb{C} , and a definable maps $\iota : L \to G$ and $\pi : G \to T$ so that the sequence $0 \longrightarrow L \xrightarrow{\iota} G \xrightarrow{\pi} T \longrightarrow 0$ is exact.

Thomas Scanlon

University of California, Berkeley

An answer

Theorem (Pillay-Scanlon)

If G is a group interpretable in \mathscr{A} , then there are a compact complex Lie group T, a linear algebraic group L over \mathbb{C} , and a definable maps $\iota : L \to G$ and $\pi : G \to T$ so that the sequence $0 \longrightarrow L \xrightarrow{\iota} G \xrightarrow{\pi} T \longrightarrow 0$ is exact.

Theorem (Aschenbrenner-Moosa-Scan<u>lon;Scanlon)</u>

If G is a group interpretable in \mathscr{A}' , then there are a definably compact group T, a linear algebraic group L over \mathbb{C}' , and definable maps $\iota : L \to G$ and $\pi : G \to T$ so that the sequence $0 \longrightarrow L \xrightarrow{\iota} G \xrightarrow{\pi} T \longrightarrow 0$ is exact.

Thomas Scanlon

・ロト ・聞ト ・ヨト ・ヨト

There is only one field

• From the classification theorem for locally compact fields it follows that any field interpretable in \mathscr{CCM} is definably isomorphic to \mathbb{C} .

Thomas Scanlon

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

There is only one field

- From the classification theorem for locally compact fields it follows that any field interpretable in \mathscr{CCM} is definably isomorphic to \mathbb{C} .
- MOOSA proved a nonstandard version of the Riemann Existence Theorem from which it follows that any field interpretable in $\mathscr{A}' \succeq \mathscr{A}$ is definably isomorphic to $\mathbb{C}' := (\mathbb{P}^1)^{\mathscr{A}'} \setminus \{\infty^{\mathscr{A}'}\}.$

Complex analysis in nonstandard manifolds

Let $\mathscr{A}' \succeq \mathscr{A}$ be an elementary extension of \mathscr{A} .

Thomas Scanlon

University of California, Berkeley

Image: A math a math

Complex analysis in nonstandard manifolds

Let $\mathscr{A}' \succeq \mathscr{A}$ be an elementary extension of \mathscr{A} .

Definition

Let $\mathscr{A}' \succeq \mathscr{A}$. If M is a compact complex manifold, then by an analytic subset of $M^{\mathscr{A}'}$ we mean a set of the form $(f^{\mathscr{A}'})^{-1}\{b\}$ where $f: M \to B$ is a holomorphic map between compact complex manifolds and $b \in B^{\mathscr{A}'}$.

Thomas Scanlon

Questions

Complex analysis in nonstandard manifolds

Let $\mathscr{A}' \succeq \mathscr{A}$ be an elementary extension of \mathscr{A} .

Definition

Let $\mathscr{A}' \succeq \mathscr{A}$. If M is a compact complex manifold, then by an analytic subset of $M^{\mathscr{A}'}$ we mean a set of the form $(f^{\mathscr{A}'})^{-1}\{b\}$ where $f: M \to B$ is a holomorphic map between compact complex manifolds and $b \in B^{\mathscr{A}'}$.

Definition

By a meromorphic function $f : M \to N$ between the irreducible analytic sets M and N we mean an irreducible analytic subset $\Gamma_f \subseteq M \times N$ for which there is a Zariski open and dense subset $U \subseteq M$ with $\Gamma_f \cap (U \times N)$ being the graph of a definable function.

Thomas Scanlon

(日)

Complex analysis in nonstandard manifolds

Let $\mathscr{A}' \succeq \mathscr{A}$ be an elementary extension of \mathscr{A} .

Definition

By a meromorphic function $f : M \to N$ between the irreducible analytic sets M and N we mean an irreducible analytic subset $\Gamma_f \subseteq M \times N$ for which there is a Zariski open and dense subset $U \subseteq M$ with $\Gamma_f \cap (U \times N)$ being the graph of a definable function.

Definition

By a definable manifold in \mathscr{A}' we mean a set M given together with a finite covering $M = \bigcup_{i=1}^{n} V_i$ and bijections $\psi_i : V_i \to U_i \subseteq X_i$ between each V_i and Zariski open subsets $U_i \subseteq X_i$ of analytic sets for which the induced transition maps are meromorphic.

Thomas Scanlon

University of California, Berkeley

イロト イヨト イヨト イ

Complex analysis in nonstandard manifolds

Let $\mathscr{A}' \succeq \mathscr{A}$ be an elementary extension of \mathscr{A} .

Proposition

If G is any group interpretable in \mathscr{A}' , then G admits a unique (up to isomorphism) structure of a definable group manifold.

Thomas Scanlon

Definition

 \mathbb{R}_{an} is the real field $(\mathbb{R}, +, \times, 0, 1, <)$ expanded by function symbols for the restriction to the unit *n*-cubes of real analytic functions.

Thomas Scanlon

University of California, Berkeley

Image: A match a ma

Definition

 \mathbb{R}_{an} is the real field $(\mathbb{R}, +, \times, 0, 1, <)$ expanded by function symbols for the restriction to the unit *n*-cubes of real analytic functions.

• The theory of \mathbb{R}_{an} is o-minimal.

Thomas Scanlon

Image: A match a ma

Definition

 \mathbb{R}_{an} is the real field ($\mathbb{R}, +, \times, 0, 1, <$) expanded by function symbols for the restriction to the unit *n*-cubes of real analytic functions.

• The theory of \mathbb{R}_{an} is o-minimal.

• Regarding \mathbb{C} as \mathbb{R}^2 via the identification $z \mapsto (\operatorname{Re}(z), \operatorname{Im}(z))$, any complex analytic function may be seen as a pair of real analytic functions. Using compactness, we may interpret *CCM* and \mathscr{A} in \mathbb{R}_{an} .

• Regarding \mathbb{C} as \mathbb{R}^2 via the identification $z \mapsto (\operatorname{Re}(z), \operatorname{Im}(z))$, any complex analytic function may be seen as a pair of real analytic functions. Using compactness, we may interpret *CCM* and \mathscr{A} in \mathbb{R}_{an} .

• If $\mathscr{A}' \succeq \mathscr{A}$ is an elementary extension of \mathscr{A} , then there is a further elementary extension $\mathscr{A}'' \succeq \mathscr{A}$ which is interpreted in a model of \mathbb{R}_{an} .

Image: A match a ma

• If $\mathscr{A}' \succeq \mathscr{A}$ is an elementary extension of \mathscr{A} , then there is a further elementary extension $\mathscr{A}'' \succeq \mathscr{A}$ which is interpreted in a model of \mathbb{R}_{an} .

Definition

A definable manifold M in an o-minimal expansion of an ordered field is definably compact if for any definable continuous curve $\gamma : [0, 1) \to M$ the limit $\lim_{x\to 1} \gamma(x)$ exists in M.

Questions

Interpretation in \mathbb{R}_{an}

Definition

A definable manifold M in an o-minimal expansion of an ordered field is definably compact if for any definable continuous curve $\gamma : [0,1) \to M$ the limit $\lim_{x\to 1} \gamma(x)$ exists in M.

So, when we say that T is definably compact, we mean that with its unique group manifold structure it is definably compact when regarded as being defined in a model of \mathbb{R}_{an} .

Classification of strongly minimal groups

Theorem (Pillay-Scanlon;Aschenbrenner-Moosa-Scanlon)

Let G be a strongly minimal group interpretable in $\mathscr{A}' \succeq \mathscr{A}$. Then either G is definably compact or G is definably isomorphic to the additive or multiplicative group of \mathbb{C}' .

Thomas Scanlon

University of California, Berkeley

Classification of strongly minimal groups

Theorem (Pillay-Scanlon;Aschenbrenner-Moosa-Scanlon)

Let G be a strongly minimal group interpretable in $\mathscr{A}' \succeq \mathscr{A}$. Then either G is definably compact or G is definably isomorphic to the additive or multiplicative group of \mathbb{C}' .

Proof sketch:

Thomas Scanlon

University of California, Berkeley

Questions

Classification of strongly minimal groups

Proof sketch:

• By strong minimality, G may be expressed as $U \cup F$ where $U \subseteq X$ is a Zariski dense and open subset of the irreducible analytic set X and F is finite.

Thomas Scanlon

Classification of strongly minimal groups

• By strong minimality, G may be expressed as $U \cup F$ where $U \subseteq X$ is a Zariski dense and open subset of the irreducible analytic set X and F is finite.

• Using a fairly long though elementary argument in point-set topology, one shows that there is a smooth, definably compact definable manifold \overline{G} and an embedding $\iota : G \to \overline{G}$ which with respect to the group manifold structure on G expresses G as a Zariski open subset of \overline{G} .

Classification of strongly minimal groups

• Using a fairly long though elementary argument in point-set topology, one shows that there is a smooth, definably compact definable manifold \overline{G} and an embedding $\iota : G \to \overline{G}$ which with respect to the group manifold structure on G expresses G as a Zariski open subset of \overline{G} .

• If $\iota(G) = \overline{G}$, we are done. Otherwise, one expresses G as a linear algebraic group by considering its action on the infinitesimal neighborhood of a point on the boundary $\overline{G} > \iota(G)$.

Thomas Scanlon

Questions

Composition series

Proposition

If G is a connected group of finitely Morley rank, then there is a composition series $\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$ of normal definable subgroups for which each quotient G_{i+1}/G_i is contained in the definable closure of a strongly minimal set together with a finite set.

Thomas Scanlon

Proposition

If G is a connected group of finitely Morley rank, then there is a composition series $\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$ of normal definable subgroups for which each quotient G_{i+1}/G_i is contained in the definable closure of a strongly minimal set together with a finite set.

Proof: Work by induction on U(G).

Thomas Scanlon

University of California, Berkeley

Proof: Work by induction on U(G). Let $X \subseteq G$ be strongly minimal.

Thomas Scanlon

University of California, Berkeley

Image: A math a math

Proof: Work by induction on U(G). Let $X \subseteq G$ be strongly minimal. Possibly removing finitely many points, X is indecomposable.

Thomas Scanlon

Image: A math a math

Proof: Work by induction on U(G).

Let $X \subseteq G$ be strongly minimal. Possibly removing finitely many points, X is indecomposable. Translating, we may assume that X contains the origin.

Thomas Scanlon

Proof: Work by induction on U(G).

Let $X \subseteq G$ be strongly minimal. Possibly removing finitely many points, X is indecomposable. Translating, we may assume that X contains the origin.

By Zilber's Indecomposability theorem, N, the group generated by the conjugates of X is normal, definable, connected and generated in finitely many steps from finitely many of the conjugates, X^{g_1}, \ldots, X^{g_m} .

Let $X \subseteq G$ be strongly minimal. Possibly removing finitely many points, X is indecomposable. Translating, we may assume that X contains the origin.

By Zilber's Indecomposability theorem, N, the group generated by the conjugates of X is normal, definable, connected and generated in finitely many steps from finitely many of the conjugates, X^{g_1}, \ldots, X^{g_m} .

Hence, N is contained in dcl (X, g_1, \ldots, g_n, A) where A is a finite set over which X is defined.

By Zilber's Indecomposability theorem, N, the group generated by the conjugates of X is normal, definable, connected and generated in finitely many steps from finitely many of the conjugates, X^{g_1}, \ldots, X^{g_m} . Hence, N is contained in dcl (X, g_1, \ldots, g_n, A) where A is a finite set over which X is defined. Let $\pi : G \to G/N =: \overline{G}$ be the quotient map.

(D) < **(P)** < **(P)** < **(P)** < **(P)**

Let
$$\pi : G \to G/N =: \overline{G}$$
 be the quotient map.
By induction, there is a good composition series
 $\{1\} = \overline{G}_0 \triangleleft \overline{G}_1 \triangleleft \cdots \triangleleft \overline{G}_n = \overline{G}.$

Thomas Scanlon

University of California, Berkeley

э

・ロト ・聞 ト ・ ヨト ・ ヨト

Let $\pi : G \to G/N =: \overline{G}$ be the quotient map. By induction, there is a good composition series $\{1\} = \overline{G}_0 \triangleleft \overline{G}_1 \triangleleft \cdots \triangleleft \overline{G}_n = \overline{G}$. Let $G_0 := \{1\}$ and $G_{i+1} := \pi^{-1}\overline{G}_i$ for $i \ge 0$.

University of California, Berkeley

Image: A math a math

Groups in the theory of compact complex manifolds

Thomas Scanlon

Questions

What is to be done?

- To prove the main theorem, it suffices to consider connected groups G interpretable in \mathscr{A}' .
- We are given a composition series $\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$ from the previous proposition.
- We need to show that we may choose the composition series so that for some N each of the quotients G_{i+1}/G_i is linear algebraic for i < N and G_{i+1}/G_i is definably compact for $i \ge N$.
- We then argue that indeed G_N is linear algebraic and G/G_N is definably compact.

Questions

What is to be done?

- To prove the main theorem, it suffices to consider connected groups G interpretable in \mathscr{A}' .
- We are given a composition series $\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$ from the previous proposition.
- We need to show that we may choose the composition series so that for some N each of the quotients G_{i+1}/G_i is linear algebraic for i < N and G_{i+1}/G_i is definably compact for $i \ge N$.
- We then argue that indeed G_N is linear algebraic and G/G_N is definably compact.

What is to be done?

- To prove the main theorem, it suffices to consider connected groups G interpretable in \mathscr{A}' .
- We are given a composition series $\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$ from the previous proposition.
- We need to show that we may choose the composition series so that for some N each of the quotients G_{i+1}/G_i is linear algebraic for i < N and G_{i+1}/G_i is definably compact for $i \ge N$.
- We then argue that indeed G_N is linear algebraic and G/G_N is definably compact.

Questions

What is to be done?

- To prove the main theorem, it suffices to consider connected groups G interpretable in \mathscr{A}' .
- We are given a composition series $\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$ from the previous proposition.
- We need to show that we may choose the composition series so that for some N each of the quotients G_{i+1}/G_i is linear algebraic for i < N and G_{i+1}/G_i is definably compact for i ≥ N.
- We then argue that indeed G_N is linear algebraic and G/G_N is definably compact.

• • • • • • • • • • • •

Questions

Rearranging the sequence

Lemma

If $1 \longrightarrow K \longrightarrow H \longrightarrow A \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where K is definably compact and A is a one-dimensional linear algebraic group, then H is definably isomorphic to $H \times A$.

Thomas Scanlon

University of California, Berkeley

Rearranging the sequence

Lemma

If $1 \longrightarrow K \longrightarrow H \longrightarrow A \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where K is definably compact and A is a one-dimensional linear algebraic group, then H is definably isomorphic to $H \times A$.

The key to the proof of this lemma is a compactification theorem similar to the strongly minimal case. A subgroup of H isomorphic to A via the projection is then realized via the action of H on the boundary.

Rearranging the sequence

Lemma

If $1 \longrightarrow K \longrightarrow H \longrightarrow A \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where K is definably compact and A is a one-dimensional linear algebraic group, then H is definably isomorphic to $H \times A$.

The key to the proof of this lemma is a compactification theorem similar to the strongly minimal case. A subgroup of H isomorphic to A via the projection is then realized via the action of H on the boundary.

From this lemma, one can drop the hypothesis that dim(A) = 1. Using this observation repeatedly, we find the desired rearranged composition series.

Definable compactness of G/G_N

On general grounds, in any o-minimal structure an extension of a definably compact group by a definably compact group is definably compact. Hence, G/G_N is definably compact.

Thomas Scanlon

University of California, Berkeley

Lemma

If $1 \longrightarrow N \longrightarrow H \longrightarrow K \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where both N and K are linear algebraic, then H is linear algebraic.

- Pillay's generalized socle theorem: If H is a group definable in A^I, X ⊆ H is an irreducible subvariety and S ≤ H is the stabilizer of X, then the quotient X/S is bimeromorphic with an algebraic variety and
- another compactification argument.

Lemma

If $1 \longrightarrow N \longrightarrow H \longrightarrow K \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where both N and K are linear algebraic, then H is linear algebraic.

The proof of this lemma uses two ingredients:

- Pillay's generalized socle theorem: If H is a group definable in *A*', X ⊆ H is an irreducible subvariety and S ≤ H is the stabilizer of X, then the quotient X/S is bimeromorphic with an algebraic variety and
- another compactification argument.

・ロト ・回ト ・回ト ・日

Lemma

If $1 \longrightarrow N \longrightarrow H \longrightarrow K \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where both N and K are linear algebraic, then H is linear algebraic.

The proof of this lemma uses two ingredients:

- Pillay's generalized socle theorem: If H is a group definable in A', X ⊆ H is an irreducible subvariety and S ≤ H is the stabilizer of X, then the quotient X/S is bimeromorphic with an algebraic variety and
- another compactification argument.

Lemma

If $1 \longrightarrow N \longrightarrow H \longrightarrow K \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where both N and K are linear algebraic, then H is linear algebraic.

The proof of this lemma uses two ingredients:

- Pillay's generalized socle theorem: If H is a group definable in A', X ⊆ H is an irreducible subvariety and S ≤ H is the stabilizer of X, then the quotient X/S is bimeromorphic with an algebraic variety and
- another compactification argument.

Image: A match a ma

Questions

Linearity of G_N

Lemma

If $1 \longrightarrow N \longrightarrow H \longrightarrow K \longrightarrow 1$ is an exact sequence of definable groups in \mathscr{A}' where both N and K are linear algebraic, then H is linear algebraic.

The proof of this lemma uses two ingredients:

- Pillay's generalized socle theorem: If H is a group definable in A', X ⊆ H is an irreducible subvariety and S ≤ H is the stabilizer of X, then the quotient X/S is bimeromorphic with an algebraic variety and
- another compactification argument.

From this, it follows that G_N is linear, and, hence, the main theorem.

イロト イポト イヨト イヨ

University of California, Berkeley

Groups in the theory of compact complex manifolds

Thomas Scanlon

Question

Is every definably compact group in \mathscr{A}' a nonstandard complex torus?

Thomas Scanlon

University of California, Berkeley

Image: A math a math

Questions

Question

Is every definably compact group in \mathscr{A}' a nonstandard complex torus?

Question

Are there other theories of groups of finite Morley rank for which our compactification arguments make sense?

Thomas Scanlon

University of California, Berkeley