p-Jets and Uniform Unramified Manin-Mumford

Thomas Scanlon
UC Berkeley
scanlon@math.berkeley.edu
19 July 2001
SMF-AMS joint meeting, Lyons

The Uniform Unramified Manin-Mumford Theorem

Theorem 1 Let R be a complete, mixed characteristic, discrete valuation ring with an algebraically closed residue field of characteristic p. Let $A \rightarrow B$ be a family of abelian schemes over R and $X \subseteq A$ a closed subscheme.

There is a natural number n and a sequence of families of subabelian schemes $A^{(1)}, \ldots, A^{(n)} \subseteq A$ for which given any point $b \in B(R)$ there are an index set $I \subseteq\{1, \ldots, n\}$ and points $\zeta_{1}, \ldots, \zeta_{n} \in A_{b}(R)$ such that

$$
X_{b}(R) \cap A_{b}(R)_{\mathrm{tor}}=\bigcup_{i \in I} \zeta_{i}+A_{b}^{(i)}(R)_{\mathrm{tor}}
$$

Modularity and Groups of Lang-type

Definition: Let G be a commutative algebraic group over some algebraically closed field K. We say that $\Gamma \leq G(K)$ is of Lang-type if for any natural number n and subvariety $X \subseteq G^{n}$ of G^{n} the set $X(K) \cap \Gamma^{n}$ is a finite union of cosets of subgroups.

Proposition 2 (Pillay) A group Γ is of Lang-type if and only if the structure $\mathcal{K}=\left(K,+, \cdot, \Gamma,\{\underline{a}\}_{a \in K}\right)$ is stable and in \mathcal{K} the set defined by Γ is one-based.

Finiteness and Uniformity

Corollary 3 If the subgroup $\Gamma \leq G(K)$ of the algebraic group G is of Lang-type, then for any family $\left\{X_{b}\right\}_{b \in B}$ of subvarieties of G there are a natural number n and algebraic subgroups $G_{1}, \ldots, G_{n} \leq G$ such that for any $b \in B$ there are a set $I \subseteq\{1, \ldots, n\}$ and points $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ such that

$$
X_{b}(K) \cap \Gamma=\bigcup_{i \in I} \gamma_{i}+\left(G_{i}(K) \cap \Gamma\right)
$$

Witt vectors

- W is a functor from the category of characteristic p fields to complete discrete valuation rings with maximal ideal generated by p.
- As a set, $W[k]=W_{p^{\infty}}[k]$ is ${ }^{\omega} k$.
- The residue field $W[k] / p W[k]$ is canonically isomorphic to k. More generally, the association $k \Rightarrow W[k] / p^{n} W[k]$ defines a ring scheme with $W[k] / p^{n} W[k]$ identified (as a set) with ${ }^{n} k$.
- $W\left[\mathbb{F}_{p}\right]=\mathbb{Z}_{p}, W\left[\mathbb{F}_{p}^{\text {alg }}\right]=\mathbb{Z}_{p}^{\text {unr }}$, the maximal unramified extension (or the completion of the maximal unramified algebraic extension) of the p-adic integers.
- $\operatorname{Aut}(k)=\operatorname{Aut}_{\text {cont }}(W[k])$. In particular, the Frobenius automorphism lifts to the relative Frobenius on the Witt vectors.

p-Derivations

Definition: A p-derivation on a unital commutative ring R is a function $\delta: R \rightarrow R$ satisfying

- $\delta(x+y)=\delta(x)+\delta(y)+\Phi_{p}(x, y)$ where $\Phi_{p}(X, Y) \in \mathbb{Z}[X, Y]$ is the polynomial $\frac{1}{p}\left((X+Y)^{p}-X^{p}-Y^{p}\right)$ and
- $\delta(x \cdot y)=x^{p} \delta(y)+y^{p} \delta(x)+p \delta(x) \delta(y)$.

If $\tau: W[k] \rightarrow W[k]$ is the relative Frobenius, then
$\delta_{p}: W[k] \rightarrow W[k]$ defined by $\delta(x)=\frac{\tau(x)-x^{p}}{p}$ is a p-derivation.

$$
p \text {-Jets }
$$

Definition: An analytic function $f: W[k]^{n} \rightarrow W[k]$ is a function of the form $x \mapsto \sum a_{\alpha} x^{\alpha}$ where $v\left(a_{\alpha}\right) \rightarrow \infty$ as $|\alpha| \rightarrow \infty$.

Definition: A p-jet function $g: W[k]^{m} \rightarrow W[k]$ is a function of the form $x \mapsto f\left(x, \ldots, \delta^{\ell} x\right)$ for some natural number ℓ and analytic function f of $m(\ell+1)$ arguments.

Buium-Manin homomorphisms

Theorem 4 (Buium) Let A be an abelian scheme over $W[k]$, the Witt vectors of an algebraically closed field of positive
characteristic. There is a surjective p-jet group homomorphism $\mu: A(W[k]) \rightarrow \widehat{\mathbb{G}}_{a}^{g}(p W[k])$.

- $A(W[k])_{\text {tor }} \leq A^{\sharp}(W[k])$.
- $A^{\sharp}(W[k]) / p^{\infty} A(W[k])$ is a finitely generated \mathbb{Z}_{p}-module.
- The reduction map $\pi: A(W[k]) \rightarrow \bar{A}(k)$ is surjective when restricted to A^{\sharp}.

We will prove the uniform unramified Manin-Mumford theorem by analyzing the following extension as a model-theoretic cover:

$$
0 \longrightarrow A_{0}^{\sharp} \longrightarrow A^{\sharp} \longrightarrow \bar{A} \longrightarrow 0
$$

Witt Vectors as Analytic Difference Rings

We consider $W[k]$ (for k an algebraically closed field of characteristic p) in a language having

- an n-ary function symbol f for each analytic function of n-variables $f: W[k]^{n} \rightarrow W[k]$,
- a binary function symbol \mathcal{Q} interpreted as $\mathcal{Q}(x, y)=\frac{x}{y}$ if $v x \geq v y \neq \infty$ and $\mathcal{Q}(x, y)=0$ otherwise,
- a unary function symbol σ interpreted as the relative Frobenius,
- a unary function symbol ac_{n} (one for each positive integer n) taking values in the imaginary sort $W[k] / p^{n} W[k]$ whose interpretation is defined by the relation
$x\left(1+p^{n} W[k]\right)=p^{v x} \mathrm{ac}_{n}(x)$, and
- unary predicates D_{n} interpreted as $D_{n}(x) \Leftrightarrow n \mid v x$.

Basic Theorems about the Witt Vectors as Analytic Difference Rings

Theorem 5 - $W[k]$ eliminates quantifiers as an analytic difference ring.

- If $k \subseteq k^{\prime}$ is an extension of algebraically closed fields of characteristic p, then $W[k] \preceq W\left[k^{\prime}\right]$ as analytic difference rings.
- If $R \succeq W[k]$ is a saturated elementary extension and $\bar{\rho}: R / p R \rightarrow R / p R$ is an automorphism, then $\bar{\rho}$ lifts to an automorphism $\rho: R \rightarrow R$.

Orthogonality in Analytic Difference Fields

Definition: We say that the definable sets X and Y are orthogonal, $X \perp Y$, if every definable subset of $X \times Y$ is a finite Boolean combination of sets of the form $A \times B$ where $A \subseteq X$ and $B \subseteq Y$ are definable sets.

In $W[k]$ considered as an analytic difference ring, the residue field and value group are orthogonal.

p-Jet Version of Uniform Unramified Manin-Mumford

Theorem 6 Let $R \succeq W[k]$ be an elementary extension of the Witt vectors of an algebraically closed field k of positive characteristic considered as an analytic difference ring. If A is an abelian scheme over R and $X \subseteq A$ is a closed subscheme, then $X(R) \cap A^{\sharp}(R)$ is a finite union of sets of the form $Y(R)+B(R)$ where $Y \subseteq A_{0}^{\sharp}$ is a definable subset of A_{0}^{\sharp} and and $B \leq A^{\sharp}$ is a definable subgroup of A^{\sharp} 。

Theorem 1 follows via a (non-trivial) compactness argument.

Definable Sets in Buium-Manin Kernels

Proposition 7 Let $k \models \mathrm{ACF}_{p}$ be an algebraically closed field of characteristic p and let $R \succeq W[k]$ be an elementary extension of the analytic difference ring $W[k]$. If A is an abelian scheme over R and $X \subseteq A^{\sharp}(R)$ is a definable set, then X is a finite Boolean combination of sets of the form $Y(R)+\pi \upharpoonright_{B}^{-1} Z(k)$ where $Y \subseteq A_{0}^{\sharp}$ is a definable subset of the kernel of reduction, $B \leq A^{\sharp}$ is a a definable subgroup, and $Z \subseteq \bar{A}$ is a subvariety of the special fibre.

Key Ingredients of the Proof

- Reduce to the case that $R=W\left[\mathbb{F}_{p}^{\text {alg }}\right]$.
- Mimic the proof of the socle theorem using the proalgebraic structure of $A^{\sharp}(W[k])$ to replace arguments that should only work in the finite Morley rank context. [This gives Proposition 7.]
- In passing from Proposition 7 to Theorem 6, one reduces to the case that any set of the form $\pi \upharpoonright_{B}^{-1} Z(k)$ is actually the intersection of a subscheme of A with a subgroup B of A^{\sharp} which maps finite-to-one to \bar{A}. In the case that $k=\mathbb{F}_{p}^{\text {alg }}, B(R)$ is torsion so that by Raynaud's Theorem, the set under consideration is a finite union of cosets of groups.

Open Questions

- Does the uniformity theorem hold for the full torsion group over \mathbb{C} ?
- What is the possible structure on A_{0}^{\sharp} ?
- Can the appeal to Raynaud's Theorem be replaced with a Zariski geometry argument?

