p-Jets and Uniform Unramified Manin-Mumford

Thomas Scanlon

UC Berkeley

scanlon@math.berkeley.edu

19 July 2001

SMF-AMS joint meeting, Lyons

1

The Uniform Unramified Manin-Mumford Theorem

Theorem 1 Let R be a complete, mixed characteristic, discrete valuation ring with an algebraically closed residue field of characteristic p. Let $A \rightarrow B$ be a family of abelian schemes over Rand $X \subseteq A$ a closed subscheme.

There is a natural number n and a sequence of families of subabelian schemes $A^{(1)}, \ldots, A^{(n)} \subseteq A$ for which given any point $b \in B(R)$ there are an index set $I \subseteq \{1, \ldots, n\}$ and points $\zeta_1, \ldots, \zeta_n \in A_b(R)$ such that

$$X_b(R) \cap A_b(R)_{\text{tor}} = \bigcup_{i \in I} \zeta_i + A_b^{(i)}(R)_{\text{tor}}$$

Modularity and Groups of Lang-type

Definition: Let G be a commutative algebraic group over some algebraically closed field K. We say that $\Gamma \leq G(K)$ is of *Lang-type* if for any natural number n and subvariety $X \subseteq G^n$ of G^n the set $X(K) \cap \Gamma^n$ is a finite union of cosets of subgroups.

Proposition 2 (Pillay) A group Γ is of Lang-type if and only if the structure $\mathcal{K} = (K, +, \cdot, \Gamma, \{\underline{a}\}_{a \in K})$ is stable and in \mathcal{K} the set defined by Γ is one-based.

3

Finiteness and Uniformity

Corollary 3 If the subgroup $\Gamma \leq G(K)$ of the algebraic group G is of Lang-type, then for any family $\{X_b\}_{b\in B}$ of subvarieties of Gthere are a natural number n and algebraic subgroups $G_1, \ldots, G_n \leq G$ such that for any $b \in B$ there are a set $I \subseteq \{1, \ldots, n\}$ and points $\gamma_1, \ldots, \gamma_n \in \Gamma$ such that

$$X_b(K) \cap \Gamma = \bigcup_{i \in I} \gamma_i + (G_i(K) \cap \Gamma)$$

Witt vectors

- W is a functor from the category of characteristic p fields to complete discrete valuation rings with maximal ideal generated by p.
- As a set, $W[k] = W_{p^{\infty}}[k]$ is ${}^{\omega}k$.
- The residue field W[k]/pW[k] is canonically isomorphic to k. More generally, the association $k \Rightarrow W[k]/p^nW[k]$ defines a ring scheme with $W[k]/p^nW[k]$ identified (as a set) with ⁿk.
- $W[\mathbb{F}_p] = \mathbb{Z}_p, W[\mathbb{F}_p^{\mathrm{alg}}] = \mathbb{Z}_p^{\mathrm{unr}}$, the maximal unramified extension (or the completion of the maximal unramified algebraic extension) of the *p*-adic integers.
- Aut(k) = Aut_{cont}(W[k]). In particular, the Frobenius automorphism lifts to the relative Frobenius on the Witt vectors.

5

p-Derivations

Definition: A *p*-derivation on a unital commutative ring R is a function $\delta: R \to R$ satisfying

- $\delta(x+y) = \delta(x) + \delta(y) + \Phi_p(x,y)$ where $\Phi_p(X,Y) \in \mathbb{Z}[X,Y]$ is the polynomial $\frac{1}{p}((X+Y)^p - X^p - Y^p)$ and
- $\delta(x \cdot y) = x^p \delta(y) + y^p \delta(x) + p \delta(x) \delta(y).$

If $\tau: W[k] \to W[k]$ is the relative Frobenius, then $\delta_p: W[k] \to W[k]$ defined by $\delta(x) = \frac{\tau(x) - x^p}{p}$ is a *p*-derivation.

p-Jets

Definition: An analytic function $f: W[k]^n \to W[k]$ is a function of the form $x \mapsto \sum a_{\alpha} x^{\alpha}$ where $v(a_{\alpha}) \to \infty$ as $|\alpha| \to \infty$.

Definition: A *p*-jet function $g: W[k]^m \to W[k]$ is a function of the form $x \mapsto f(x, \ldots, \delta^{\ell}x)$ for some natural number ℓ and analytic function f of $m(\ell + 1)$ arguments.

7

Buium-Manin homomorphisms

Theorem 4 (Buium) Let A be an abelian scheme over W[k], the Witt vectors of an algebraically closed field of positive characteristic. There is a surjective p-jet group homomorphism $\mu: A(W[k]) \to \widehat{\mathbb{G}_a}^g(pW[k]).$

- $A(W[k])_{tor} \le A^{\sharp}(W[k]).$
- $A^{\sharp}(W[k])/p^{\infty}A(W[k])$ is a finitely generated \mathbb{Z}_p -module.
- The reduction map $\pi : A(W[k]) \to \overline{A}(k)$ is surjective when restricted to A^{\sharp} .

We will prove the uniform unramified Manin-Mumford theorem by analyzing the following extension as a model-theoretic cover:

 $0 \xrightarrow{} A_0^{\sharp} \xrightarrow{} A^{\sharp} \xrightarrow{} \overline{A} \xrightarrow{} 0$

Witt Vectors as Analytic Difference Rings

We consider W[k] (for k an algebraically closed field of characteristic p) in a language having

- an *n*-ary function symbol f for each analytic function of *n*-variables $f: W[k]^n \to W[k]$,
- a binary function symbol Q interpreted as $Q(x, y) = \frac{x}{y}$ if $vx \ge vy \ne \infty$ and Q(x, y) = 0 otherwise,
- a unary function symbol σ interpreted as the relative Frobenius,
- a unary function symbol \mathbf{a}_n (one for each positive integer n) taking values in the imaginary sort $W[k]/p^n W[k]$ whose interpretation is defined by the relation $x(1+p^n W[k]) = p^{vx} \mathbf{a}_n(x)$, and
- unary predicates D_n interpreted as $D_n(x) \Leftrightarrow n | vx$.

9

Basic Theorems about the Witt Vectors as Analytic Difference Rings

Theorem 5 • W[k] eliminates quantifiers as an analytic difference ring.

- If k ⊆ k' is an extension of algebraically closed fields of characteristic p, then W[k] ≤ W[k'] as analytic difference rings.
- If R ≥ W[k] is a saturated elementary extension and *ρ*: R/pR → R/pR is an automorphism, then *ρ* lifts to an automorphism ρ: R → R.

Orthogonality in Analytic Difference Fields

Definition: We say that the definable sets X and Y are orthogonal, $X \perp Y$, if every definable subset of $X \times Y$ is a finite Boolean combination of sets of the form $A \times B$ where $A \subseteq X$ and $B \subseteq Y$ are definable sets.

In W[k] considered as an analytic difference ring, the residue field and value group are orthogonal.

11

p-Jet Version of Uniform Unramified Manin-Mumford

Theorem 6 Let $R \succeq W[k]$ be an elementary extension of the Witt vectors of an algebraically closed field k of positive characteristic considered as an analytic difference ring. If A is an abelian scheme over R and $X \subseteq A$ is a closed subscheme, then $X(R) \cap A^{\sharp}(R)$ is a finite union of sets of the form Y(R) + B(R) where $Y \subseteq A_0^{\sharp}$ is a definable subset of A_0^{\sharp} and and $B \leq A^{\sharp}$ is a definable subgroup of A^{\sharp} .

Theorem 1 follows via a (non-trivial) compactness argument.

Definable Sets in Buium-Manin Kernels

Proposition 7 Let $k \models ACF_p$ be an algebraically closed field of characteristic p and let $R \succeq W[k]$ be an elementary extension of the analytic difference ring W[k]. If A is an abelian scheme over R and $X \subseteq A^{\sharp}(R)$ is a definable set, then X is a finite Boolean combination of sets of the form $Y(R) + \pi \upharpoonright_B^{-1} Z(k)$ where $Y \subseteq A_0^{\sharp}$ is a definable subset of the kernel of reduction, $B \leq A^{\sharp}$ is a a definable subgroup, and $Z \subseteq \overline{A}$ is a subvariety of the special fibre.

13

Key Ingredients of the Proof

- Reduce to the case that $R = W[\mathbb{F}_p^{\text{alg}}].$
- Mimic the proof of the socle theorem using the proalgebraic structure of A^{\$\\$}(W[k]) to replace arguments that should only work in the finite Morley rank context. [This gives Proposition 7.]
- In passing from Proposition 7 to Theorem 6, one reduces to the case that any set of the form π ↾_B⁻¹ Z(k) is actually the intersection of a subscheme of A with a subgroup B of A[#] which maps finite-to-one to A. In the case that k = 𝔽_p^{alg}, B(R) is torsion so that by Raynaud's Theorem, the set under consideration is a finite union of cosets of groups.

Open Questions

- Does the uniformity theorem hold for the full torsion group over \mathbb{C} ?
- What is the possible structure on A_0^{\sharp} ?
- Can the appeal to Raynaud's Theorem be replaced with a Zariski geometry argument?

15