SUPERSTABILITY OF F-STRUCTURES

RAHIM MOOSA AND THOMAS SCANLON

The following note is a supplement to [1]. We will maintain the notation of [1] throughout, and all numbered items to which we refer are from that paper. Theorem 6.11 states that if M is a finitely generated R-module then $\text{Th}(M, \mathcal{F})$ is stable. As pointed out in Remark 6.12, the proof Theorem 6.11 yields a stronger conclusion: $\text{Th}(M, \mathcal{F})$ is superstable. These notes consist of detailed arguments for this strengthening.

We wish to extend our notion of dimension for exponential F-sets (Definition 6.6) to arbitrary groupless F-sets. First of all, we point out that δ -dimension (unlike δ -degree) does not really depend on δ .

Lemma 0.1. Suppose M is a finitely generated R-module, $\delta > 0$ is a multiple of δ_M , and $S \in \text{Exp}_M(\delta)$. Suppose $\delta' > 0$ is another multiple of δ_M and $S \in \text{Exp}_M(\delta')$. Then $\dim_{\delta} S = \dim_{\delta'} S$.

Proof. Working instead with $\delta'\delta$, it suffices to deal with the case when δ' is a multiple of δ . Write $S = F^B \overline{a}$ where \overline{a} is a tuple from M and B is a δ -closed set. Then B is also δ' -closed (see Remark 3.2). Now $\dim_{\delta} S$ is the Morley rank of $[B]_{\overline{a}}$ computed in $(\mathbb{N}, 0, \sigma, P_{\delta})$, while $\dim_{\delta'} S$ is the Morley rank of $[B]_{\overline{a}}$ computed in $(\mathbb{N}, 0, \sigma, P_{\delta'})$. But these coincide. Indeed, both structures are of Morley rank 1 (Proposition A.1 and the bi-interpretation given by Proposition A.2), so that Morley rank is given by algebraic dimension. From quantifier elimination for these structures (again by Proposition A.1 and the bi-interpretation given by Proposition A.2), it follows that algebraic closure in $(\mathbb{N}, 0, \sigma, P_{\delta})$ is the same as algebraic closure in $(\mathbb{N}, 0, \sigma, P_{\delta'})$. Thus, algebraic dimensions agree, and therefore, also Morley ranks.

Lemma 0.1 allows us to define an absolute dimension for exponential F-sets:

Definition 0.2. If $S \in \text{Exp}_M$ then the dimension of S, denoted by dim S, is the δ -dimension of S for any $\delta > 0$ a multiple of δ_M such that $S \in \text{Exp}_M(\delta)$.

Lemma 0.3. Suppose $S_1, \ldots, S_n, T_1, \ldots, T_m \in \operatorname{Exp}_M$, and $\bigcup_{i=1}^n S_i = \bigcup_{j=1}^m T_j$. Then, $\max\{\dim S_i : 1 \le i \le n\} = \max\{\dim T_j : 1 \le j \le m\}.$

Proof. First consider the case when n = 1, and let $S := S_1$. Let $\delta > 0$ be a multiple of δ_M such that $S, T_1, \ldots, T_m \in \operatorname{Exp}_M(\delta)$. Write $S = F^B \overline{a}$ and $T_j = F^{C_j} \overline{b}_j$ for each $j = 1, \ldots, m$, where B and the C_j 's are δ -closed. Then, as each $T_j \subset S$, $T_j = F^{D_j} \overline{a}$ where D_j is the δ -closed subset of B given by

$$D_j := \{ \overline{r} \in B : \text{ for some } \overline{s} \in C_j, (\overline{r}, \overline{s}) \in \log_{(\overline{a}, -\overline{b}_j)} 0 \}$$

Date: 29 June 2003.

So $\dim_{\delta} T_j = \operatorname{RM}[D_j]_{\overline{a}}$. Also, $B = \bigcup_{j=1}^m D_j$, and hence $[B]_{\overline{a}} = \bigcup_{j=1}^m [D_j]_{\overline{a}}$. Computing Morley rank in $(\mathbb{N}, 0, \sigma, P_{\delta})$ we have $\dim_{\delta} S = \max\{\dim_{\delta} T_j : 1 \leq j \leq m\}$.

We have proved the n = 1 case of the Lemma. From this it follows that if $S \in \operatorname{Exp}_M$ and $S \subset \bigcup_{j=1}^m T_j$, then dim $S \leq \max\{\dim T_j : 1 \leq j \leq m\}$. Indeed, $S = \bigcup_{j=1}^m (T_j \cap S)$, and each $T_j \cap S$ is a finite union of exponential F-sets of dimension at most dim T_j (see Remarks 6.5 and 6.7). It follows that if $\bigcup_{i=1}^n S_i = \bigcup_{j=1}^m T_j$, then $\max\{\dim S_i : 1 \leq i \leq n\} \leq \max\{\dim T_j : 1 \leq j \leq m\}$. By symmetry, we have $\max\{\dim S_i : 1 \leq i \leq n\} = \max\{\dim T_j : 1 \leq j \leq m\}$, as desired. \Box

We can thus extend the notion of dimension to cycle-free groupless F-sets:

Definition 0.4. Suppose M is a finitely generated R-module. For $U \in Orb_M$, we define the *dimension of* U to be

$$\dim U = \max\{\dim S_i : 1 \le i \le n\}$$

for any $S_1, \ldots, S_n \in \operatorname{Exp}_M$ such that $U = \bigcup_{i=1}^n S_i$.

We wish to extend this definition to arbitrary groupless F-sets. Given $U \in \operatorname{Groupless}(M)$ there exists a finitely generated R-module $M' \geq M$ such that $U \in \operatorname{Orb}_{M'}$ (by Lemma 2.7). One can, of course, define the dimension of U with respect to M' to be the dimension of U computed as a cycle-free groupless F-set in M'. Suppose $M'' \geq M$ is another finitely generated R-module such that $U \in \operatorname{Orb}_{M''}$. Let N be a finitely generated R-module extending both M' and M''. Note that for any $S \in \operatorname{Exp}_{M'}$, the dimension of S as computed in M' coincides with that computed in N (since for any tuple $\overline{a} \in (M')^n$, \overline{a} -equivalence on \mathbb{N}^n does not depend on whether one works with M' or N). It follows that the dimension of $U \in \operatorname{Orb}_{M'}$ and N. Hence the dimension of $U \in \operatorname{Groupless}(M)$ with respect to M' is equal to the dimension of U with respect to M''.

Definition 0.5. Suppose $U \in \text{Groupless}(M)$. The dimension of U, denoted by dim U, is defined to be the dimension of U with respect to M', where $M' \geq M$ is any finitely generated R-module such that $U \in \text{Orb}_{M'}$.

Lemma 0.6. (a) If $U \in \text{Groupless}(M)$ and $c \in M$, then $\dim(c+U) = \dim U$.

- (b) If $U, V \in \text{Groupless}(M)$ and $U \subset V$, then $\dim U \leq \dim V$.
- (c) Suppose $G \leq M$ is a submodule, $\pi : M \to M/G$ is the quotient map, and $U \in \text{Groupless}(M)$. Then $\dim \pi U \leq \dim U$.

Proof. Let $M' \geq M$ be such that $U \in \operatorname{Orb}_{M'}$. Let $\delta > 0$ be a multiple of $\delta_{M'}$ such that $U \in \operatorname{Orb}_{M'}(\delta)$. Write $U = \bigcup_{i=1}^{n} S_i$, for some $S_1, \ldots, S_n \in \operatorname{Exp}_{M'}(\delta)$. Then dim $U = \max\{\dim_{\delta} S_i : 1 \leq i \leq n\}$. On the other hand, $c + U = \bigcup_{i=1}^{n} (c + S_i)$, and $\dim_{\delta}(c + S_i) = \dim_{\delta} S_i$ for each *i* (see Remark 6.7). This proves part (*a*).

For part (b), let $M' \geq M$ be such that $U, V \in \operatorname{Orb}_{M'}$. Write $U = \bigcup_{i=1}^{n} S_i$ and $V = \bigcup_{j=1}^{m} T_j$, for some $S_1, \ldots, S_n, T_1, \ldots, T_m \in \operatorname{Exp}_{M'}$. So each $S_i \subset \bigcup_{j=1}^{m} T_j$. As in the proof of Lemma 0.3 (or by Remark 6.7), dim $S_i \leq \max\{\dim T_j : 1 \leq j \leq m\} = \dim V$. Hence dim $U \leq \dim V$, as desired.

For part (c), let $M' \ge M$ and $\delta > 0$ be a multiple of $\delta_{M'}$ such that $U \in \operatorname{Orb}_{M'}^M(\delta)$. Write $U = \bigcup_{i=1}^{\ell} S_i$, where each $S_i \in \operatorname{Exp}_{M'}^M(\delta)$. Write $S_i = F^{B_i}\overline{a}_i$, where \overline{a}_i is a tuple from M' and B_i is δ -closed. Let $\pi' : M' \to M'/G$ be the quotient map. Then $\pi U = \bigcup_{i=1}^{\ell} \pi S_i$ and each $\pi S_i = F^{B_i} \pi'(\overline{a}_i)$. It suffices therefore to show that $\operatorname{RM}[B_i]_{\overline{a}_i} \geq \operatorname{RM}[B_i]_{\pi'(\overline{a}_i)}$ in $(\mathbb{N}, 0, \sigma, P_{\delta})$, for each $i = 1, \ldots, \ell$. But this follows from the observation that \overline{a}_i -equivalence is finer than $\pi'(\overline{a}_i)$ -equivalence. \Box

We now prove the superstability of F-structures. Given stability, this is equivalent to the assertion that there are no infinite forking chains. We prove this by defining an ordinal valued rank which drops when a type forks. We work in a sufficiently saturated elementary extension of M, *M.

For $G \leq M$ a submodule, we define $d(G) := \dim_{\mathbb{Q}}(M \otimes \mathbb{Q})$. For $U \in \text{Groupless}(M)$, we define $d_G(U)$ to be the dimension of $\pi U \in \text{Groupless}(M/G)$, where π is the quotient map. We define

$$d(U,G) := \langle d(G), d_G(U) \rangle \in \mathbb{N} \times \mathbb{N} = \omega \cdot 2.$$

Here we regard $\mathbb{N} \times \mathbb{N}$ as the ordinal $\omega \cdot 2$ via the lexicographic ordering.

Let $q \in S_1(N)$ be a type over an elementary substructure $N \leq M$. We extend the notation of the proof of Theorem 6.11 so that

 $D_{U,G}(q) := \{ a \in {}^*M : q(x) \mid {}^*M \vdash x \in a + {}^*U + {}^*G \}$

where $q \mid {}^*M$ denotes the unique nonforking extension of q to *M . Note that as a consequence of stability, $D_{U,G}(q)$ is definable over N, and as $N \preceq {}^*M$, if $D_{U,G}(q)$ is non-empty then $D_{U,G}(q) \cap N$ is non-empty. We define

$$R(q) := \min\{d(U,G) : D_{U,G}(q) \neq \emptyset, U \in \operatorname{Groupless}(M), G \le M \text{ a submodule}\}.$$

Proposition 0.7. Let $N \leq {}^*M$ be an elementary substructure and $p \in S_1({}^*M)$. If p forks over N, then $R(p \upharpoonright N) > R(p)$.

Proof. We show the contrapositive. Let $q := p \upharpoonright N$, and assume that $R(p) \ge R(q)$. We will show that for any $G \le M$ a submodule, and $U \in \text{Groupless}(M)$, $D_{U,G}(p)$ is *N*-definable. As in Theorem 6.11, this will prove that p is *N*-definable, and hence p does not fork over N.

Fix $G \leq M$ submodule, and $U \in \text{Groupless}(M)$ such that $D_{U,G}(p)$ is non-empty (else it is clearly N-definable). Also, let $V \in \text{Groupless}(M)$ and $H \leq M$ be such that $D_{V,H}(q) \neq \emptyset$ and d(V,G) = R(q). Fix $c \in D_{V,H}(q) \cap N$. Let $W_1, \ldots, W_\ell \in$ Groupless(M) be such that for any $b \in {}^*M$,

(1)
$$(b + {}^{*}U + {}^{*}G) \cap (c + {}^{*}V + {}^{*}H) = \bigcup_{i \in J} d_{j} + {}^{*}W_{j} + {}^{*}(G \cap H)$$

for some $J \subset \{1, \ldots, \ell\}$ and $d_j \in {}^*M$ (using Corollary 5.5). Note that $b \in D_{U,G}(p)$ if and only if there exists $J \subset \{1, \ldots, \ell\}$ and $(d_j)_{j \in J}$ such that equation (1) holds and $d_j \in D_{W_j,G \cap H}(p)$ for some $j \in J$. As $c \in N$, it suffices to show that each $D_{W_j,G \cap H}(p)$ is N-definable. That is we may assume $G \leq H$.

As $d(G) \ge d(H)$, it must be that d(G) = d(H) and G is of finite index in H. So for some $h_1, \ldots, h_n \in H$, $*V + *H = \bigcup_{i=1}^n *(h_i + V) + *G$. Hence $D_{h_i+V,G}(q) \ne \emptyset$ for

some *i*. Also $d_G(h_i + V) = d_G(V) \leq d_H(V)$ by Lemma 0.6 parts (*a*) and (*c*). By the minimality of d(V, H), we have that $d(h_i + V, G) = d(V, H) = R(q)$. That is, replacing V with $h_i + V$ and H with G, we may assume that G = H.

Letting $\overline{M} = M/G$, we work in $*\overline{M} := *M/*G$ with the induced structure of an elementary extension of \overline{M} . Let $\overline{N} := N/(*G \cap N) \preceq *\overline{M}$, and let π denote the

quotient map. If $p = \operatorname{tp}(\alpha/{}^*M)$ and $q = \operatorname{tp}(\alpha/N)$, then let $\overline{p} := \operatorname{tp}(\pi\alpha/{}^*\overline{M})$, and its restriction $\overline{q} := \operatorname{tp}(\pi\alpha/\overline{N})$. In order to show that $D_{U,G}(p)$ is definable over N, it suffices to show that $D_{\pi U,0}(\overline{p})$ is \overline{N} -definable.

Let $M' \geq \overline{M}$ be a finitely generated *R*-module, and $\delta > 0$ a multiple of $\delta_{M'}$, such that $\pi U, \pi V \in \operatorname{Orb}_{M'}^{\overline{M}}(\delta)$. Write $\pi V = \bigcup_{i=1}^{n} T_i$ where $T_i \in \operatorname{Exp}_{M'}^{\overline{M}}(\delta)$. Using Proposition A.6, we may assume that each $\operatorname{deg}_{\delta}(T_i) = 1$. Since $D_{V,G}(q)$ is nonempty, for some $j \in \{1, \ldots, n\}$, $D_{T_j,0}(\overline{q})$ is also non-empty. We claim that it suffices to show:

(2) If $T \in \operatorname{Exp}_{M'}^{\overline{M}}(\delta)$ and $D_{T,0}(\overline{p}) \neq \emptyset$, then $(\dim_{\delta}, \deg_{\delta})(T) \ge (\dim_{\delta}, \deg_{\delta})(T_j)$.

Indeed, from the proof of Theorem 6.11, if (2) holds, then for any $b \in D_{T_j,0}(\overline{p})$, $D_{\pi U,0}(\overline{p})$ will be b-definable. Since $D_{T_j,0}(\overline{q}) \cap \overline{N} \neq \emptyset$, we would have that $D_{\pi U,0}(\overline{p})$ is definable over \overline{N} , as desired.

To show (2), note that as $\deg_{\delta} T_j = 1$, we need only show that $\dim_{\delta} T \ge \dim_{\delta} T_j$ As $T \in \text{Groupless}(\overline{M})$, there is $W \in \text{Groupless}(M)$ such that $\pi W = T$. Moreover, as $D_{T,0}(\overline{p})$ is non-empty, so is $D_{W,G}(p)$. It follows that

$$\langle d(G), \dim_{\delta} T \rangle = d(W, G) \ge R(p) \ge R(q) = d(V, G) \ge \langle d(G), \dim_{\delta} T_j \rangle.$$

This proves (2) and hence the Proposition.

Corollary 0.8. For M a finitely generated R-module, $Th(M, \mathcal{F})$ is superstable.

Proof. By Proposition 0.7, there is no infinite forking chain of 1-types over elementary substructures. Superstability follows from the following lemma (which is probably well-known). \Box

Lemma 0.9. Let T be a simple theory. Then T is supersimple just in case there is no infinite elementary chain $M_0 \leq M_1 \leq M_2 \leq \cdots \bigcup M_i =: M \models T$ and type $p \in S_1(M)$ such that $p \upharpoonright M_{i+1}$ forks over M_i for all $i \in \omega$.

Proof. Suppose that T is not supersimple and seek a contradiction. Then we can find some model $M \models T$, an increasing sequence $A_0 \subseteq A_1 \subseteq \cdots M$ of subsets of M and an element $a \in M$ such that $\operatorname{tp}(a/A_{i+1})$ forks over A_i for each i.

Working in a definitional expansion of the language of T we may assume that T eliminates quantifiers so that every extension of models of T is elementary.

Let $C := \{a\} \cup \bigcup_{i=0}^{\infty} A_i$. We build the sequence of models $\langle M_i \mid i \in \omega \rangle$ by recursion. Let M_0 be a model containing A_0 with M_0 free from C over A_0 . For example, let M_0 realize a nonforking extension of $\operatorname{tp}(M/A_0)$ to C. At stage i+1let M_{i+1} be a model containing $A_{i+1} \cup M_i$ which is free from C over $A_{i+1} \cup M_i$. Set $p := \operatorname{tp}(a/\bigcup_{i\in\omega} M_i)$.

We claim that $p \upharpoonright M_{i+1}$ forks over M_i for each *i*. We proceed by induction on *i*. We start with the case of i = 0. If the claim were false in this case, then *a* would be free from M_1 over M_0 . But as M_0 is free from *C* over A_0 , we have (using symmetry, transitivity, and monotonicity) that *a* is free from A_1 over A_0 , a contradiction.

We consider now the case of i + 1. Suppose that a is free from M_{i+2} over M_{i+1} . We argue by induction on $j \leq i+2$ that a is free from M_{i+2} over $A_{i+1} \cup M_{i+1-j}$ where $M_{-1} := \emptyset$.

The case of j = 0 is given by hypothesis. Suppose now the result for j (with $j \leq i+1$). By construction, M_{i+1-j} is free from C over $M_{i+1-(j+1)} \cup A_{i+1-j}$. By

monotonicity and symmetry, we see that a is free from M_{i+1-j} over $M_{i+1-(j+1)} \cup$ A_{i+1} . By transitivity (using the inductive hypothesis) we have that a is free from M_{i+2} over $M_{i+1-(j+1)} \cup A_{i+1}$, as claimed. Taking j = i+2, we see that a is free from M_{i+2} over A_{i+1} . By monotonicity,

a is free from A_{i+2} over A_{i+1} , a contradiction.

References

[1] R. Moosa and T. Scanlon. F-structures and integral points on semiabelian varieties over finite fields. Preprint, 2003.