SUPERSTABILITY OF F-STRUCTURES

RAHIM MOOSA AND THOMAS SCANLON

The following note is a supplement to [1]. We will maintain the notation of [1]
throughout, and all numbered items to which we refer are from that paper. Theo-
rem 6.11 states that if M is a finitely generated R-module then Th(M, F) is stable.
As pointed out in Remark 6.12, the proof Theorem 6.11 yields a stronger conclu-
sion: Th(M, F) is superstable. These notes consist of detailed arguments for this
strengthening.

We wish to extend our notion of dimension for exponential F-sets (Definition 6.6)
to arbitrary groupless F-sets. First of all, we point out that §-dimension (unlike
d-degree) does not really depend on 4.

Lemma 0.1. Suppose M is a finitely generated R-module, § > 0 is a multiple of 6y,
and S € Exp,;(8). Suppose &' > 0 is another multiple of pr and S € Exp,,(&').
Then dimg S = dimg: S.

Proof. Working instead with 6’0, it suffices to deal with the case when ¢’ is a multi-
ple of §. Write S = FBa where @ is a tuple from M and B is a §-closed set. Then B
is also §’-closed (see Remark 3.2). Now dims S is the Morley rank of [B]z computed
in (N,0, 0, Ps), while dims/ S is the Morley rank of [B]g computed in (N, 0, o, Ps/).
But these coincide. Indeed, both structures are of Morley rank 1 (Proposition A.1
and the bi-interpretation given by Proposition A.2), so that Morley rank is given
by algebraic dimension. From quantifier elimination for these structures (again by
Proposition A.1 and the bi-interpretation given by Proposition A.2), it follows that
algebraic closure in (N, 0,0, Ps5) is the same as algebraic closure in (N, 0,0, Ps/).
Thus, algebraic dimensions agree, and therefore, also Morley ranks. O

Lemma 0.1 allows us to define an absolute dimension for exponential F-sets:

Definition 0.2. If S € Exp,,; then the dimension of S, denoted by dim S, is the
d-dimension of S for any § > 0 a multiple of §5; such that S € Exp,,(9).

Lemma 0.3. Suppose Si,...,8n,T1,...,Tm € Expy,, and U S; = U T;. Then,
i=1 j=1
max{dim S; : 1 <i <n} =max{dimT} : 1 < j < m}.

Proof. First consider the case when n = 1, and let S := S7. Let § > 0 be a multiple
of §r such that S, 11, ..., Ty, € Exp,, (). Write S = FBa and T; = Fb; for each
j=1,...,m, where B and the C}’s are d-closed. Then, aseachT; C S, T; = FPig
where D; is the d-closed subset of B given by

Dj:={r e B: forsomes e Cj,(7,5) €log 3 0}.
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So dims Tj = RM[D;lz. Also, B = |J;“, D;, and hence [Blg = UJ].,[D;la. Com-

puting Morley rank in (N, 0,0, Ps) we have dims .S = max{dim; T; : 1 < j < m}.
We have proved the n = 1 case of the Lemma. From this it follows that if

S € Expy and S € UL, Tj, then dim S < max{dimTj : 1 < j < m}. Indeed,

S = U;n:l (T;NS), and each T;NS is a finite union of exponential F-sets of dimension

at most dim T} (see Remarks 6.5 and 6.7). It follows that if U S; = U T;, then
i=1 j=1

max{dim S; : 1 < i < n} < max{dim7}; : 1 < j < m}. By symmetry, we have

max{dim S; : 1 <i <n} =max{dimTj : 1 < j < m}, as desired. O

We can thus extend the notion of dimension to cycle-free groupless F-sets:

Definition 0.4. Suppose M is a finitely generated R-module. For U € Orb,,, we
define the dimension of U to be

dim U = max{dim S; : 1 <i < n},

n
for any Sy,...,S, € Exp,,; such that U = U S;.

i=1

We wish to extend this definition to arbitrary groupless F-sets. Given U €

Groupless(M) there exists a finitely generated R-module M’ > M such that U €
Orbys (by Lemma 2.7). One can, of course, define the dimension of U with respect
to M’ to be the dimension of U computed as a cycle-free groupless F-set in M’.
Suppose M"” > M is another finitely generated R-module such that U € Orbp.
Let N be a finitely generated R-module extending both M’ and M"”. Note that
for any S € Exp,;s, the dimension of S as computed in M’ coincides with that
computed in N (since for any tuple @ € (M')", a-equivalence on N™ does not
depend on whether one works with M’ or N). It follows that the dimension of
U € Orby is constant whether we compute it in M’ or in N. Similarly for M"
and N. Hence the dimension of U € Groupless(M) with respect to M’ is equal to
the dimension of U with respect to M”. We can therefore define:

Definition 0.5. Suppose U € Groupless(M). The dimension of U, denoted by
dim U, is defined to be the dimension of U with respect to M’, where M’ > M is
any finitely generated R-module such that U € Orby,..

Lemma 0.6. (a) If U € Groupless(M) and ¢ € M, then dim(c+U) = dimU.
(b) If U,V € Groupless(M) and U C V, then dimU < dim V.
(¢) Suppose G < M is a submodule, m : M — M/G is the quotient map, and
U € Groupless(M). Then dim7U < dimU.

Proof. Let M’ > M be such that U € Orbys. Let § > 0 be a multiple of §; such
that U € Orbpy (6). Write U = [JI, S;, for some Si,...,S, € Exp,; (). Then
dim U = max{dims S; : 1 <4 < n}. On the other hand, c+ U = J_,(c+ S;), and
dims(c + S;) = dimy S; for each i (see Remark 6.7). This proves part (a).

For part (b), let M’ > M be such that U,V € Orbyy. Write U = JI, S; and
V =Uj., Ty, for some Si,..., S, Th,..., Ty € Expyp. So each S; € UL, Tj. As
in the proof of Lemma 0.3 (or by Remark 6.7), dim.S; < max{dim7j : 1 < j <
m} =dim V. Hence dimU < dim V', as desired.

For part (¢), let M’ > M and 6 > 0 be a multiple of §;+ such that U € OrbM,((S).
Write U = Ule S;, where each S; € Expj\]\g/(é). Write S; = FBig;, where @; is a
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tuple from M’ and B; is d-closed. Let 7' : M’ — M'/G be the quotient map.
Then nU = Ule 7S; and each wS; = FBix'(a;). It suffices therefore to show that
RM[B;la, > RM[B;] g, in (N, 0,0, Ps), for each i = 1,..., £. But this follows from
the observation that @;-equivalence is finer than #’(a;)-equivalence. (]

We now prove the superstability of F-structures. Given stability, this is equiv-
alent to the assertion that there are no infinite forking chains. We prove this by
defining an ordinal valued rank which drops when a type forks. We work in a
sufficiently saturated elementary extension of M, *M.

For G < M asubmodule, we define d(G) := dimg(M®Q). For U € Groupless(M),
we define dg(U) to be the dimension of 7U € Groupless(M/G), where 7 is the quo-
tient map. We define

d(U,G) = (d(G),de(U)) e Nx N=w - 2.

Here we regard N x N as the ordinal w - 2 via the lexicographic ordering.
Let ¢ € S1(N) be a type over an elementary substructure N < *M. We extend
the notation of the proof of Theorem 6.11 so that

Dycglq)={a€e™M :q(z) | " MFzeca+"U+*G}

where ¢ | *M denotes the unique nonforking extension of ¢ to *M. Note that as a
consequence of stability, Dy, ¢(q) is definable over N, and as N < *M, if Dy c(q)
is non-empty then Dy c(g) NN is non-empty. We define

R(q) := min{d(U,G) : Dy,c(q) # 0,U € Groupless(M),G < M a submodule}.

Proposition 0.7. Let N <X *M be an elementary substructure and p € S;(*M). If
p forks over N, then R(p | N) > R(p).

Proof. We show the contrapositive. Let ¢ := p [ N, and assume that R(p) > R(q).
We will show that for any G < M a submodule, and U € Groupless(M), Dy,c(p) is
N-definable. As in Theorem 6.11, this will prove that p is N-definable, and hence
p does not fork over V.

Fix G < M submodule, and U € Groupless(M) such that Dy ¢(p) is non-empty
(else it is clearly N-definable). Also, let V' € Groupless(M) and H < M be such
that Dy, (¢) # 0 and d(V,G) = R(q). Fix ¢ € Dy g(¢) N N. Let Wq,..., W, €
Groupless(M) be such that for any b € *M,

(1) (b+*U+*G)N(c+*V+"H)=|Jd;j+ W, +*(GNH)

i€J
for some J C {1,...,¢} and d; € *M (using Corollary 5.5). Note that b € Dy (p)
if and only if there exists J C {1,...,¢} and (d;);es such that equation (1) holds
and d; € Dw, cnu(p) for some j € J. As ¢ € N, it suffices to show that each

Dw, gnr(p) is N-definable. That is we may assume G < H.
As d(G) > d(H), it must be that d(G) = d(H) and G is of finite index in H. So

for some hy,...,h, € H,*V+"H = U *(h; +V)+*G. Hence Dy, +v.c(q) # 0 for
i=1
some i. Also dg(h; + V) = dg(V) < dg(V) by Lemma 0.6 parts (a) and (¢). By
the minimality of d(V, H), we have that d(h; + V,G) = d(V, H) = R(q). That is,
replacing V' with h; +V and H with G, we may assume that G = H.
Letting M = M /G, we work in *M := *M/*G with the induced structure of an
elementary extension of M. Let N := N/(*G N N) < *M, and let 7 denote the
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quotient map. If p = tp(a/*M) and ¢ = tp(a/N), then let p := tp(ma/* M), and
its restriction g := tp(ra/N). In order to show that Dy g(p) is definable over N,
it suffices to show that D,y o(p) is N-definable.

Let M’ > M be a finitely generated R-module, and § > 0 a multiple of daz,
such that 7U, 7V € Orb}1,(8). Write 7V = (I, T; where T; € Exp}t (5). Using
Proposition A.6, we may assume that each deg;(T;) = 1. Since Dy ¢(q) is non-
empty, for some j € {1,...,n}, D, o(q) is also non-empty. We claim that it suffices
to show:

(2) If T € Expil (6) and Dy o(p) # 0, then (dimg, deg;)(T) > (dimg, degs)(T}).

Indeed, from the proof of Theorem 6.11, if (2) holds, then for any b € Dr; o(p),
Dry,0(p) will be b-definable. Since Dr, 0(q) NN # 0, we would have that Dry,0(P)
is definable over N, as desired.

To show (2), note that as degs T; = 1, we need only show that dims T > dim, T

As T € Groupless(M), there is W € Groupless(M) such that 7 = T. Moreover,
as D7 o(P) is non-empty, so is Dw,¢(p). It follows that

(d(G),dims T) = d(W,G) = R(p) > R(q) = d(V,G) = (d(G), dims T}).
This proves (2) and hence the Proposition. O
Corollary 0.8. For M a finitely generated R-module, Th(M, F) is superstable.

Proof. By Proposition 0.7, there is no infinite forking chain of 1-types over ele-
mentary substructures. Superstability follows from the following lemma (which is
probably well-known). O

Lemma 0.9. Let T be a simple theory. Then T is supersimple just in case there
is no infinite elementary chain My < My < My < ---|UM; == M E T and type
p € S1(M) such that p [ M1 forks over M; for all i € w.

Proof. Suppose that T is not supersimple and seek a contradiction. Then we can
find some model M = T, an increasing sequence Ag C Ay C --- M of subsets of M
and an element a € M such that tp(a/A;11) forks over A; for each i.

Working in a definitional expansion of the language of T" we may assume that T
eliminates quantifiers so that every extension of models of T' is elementary.

Let C := {a} UJjo, A;. We build the sequence of models (M; | i € w) by
recursion. Let My be a model containing Ag with My free from C over Ag. For
example, let My realize a nonforking extension of tp(M/Ag) to C. At stage i + 1
let M;y1 be a model containing A;,1 U M; which is free from C over A;;1 U M;.
Set p:=tp(a/U,c., Mi)-

We claim that p | M; ;1 forks over M; for each i. We proceed by induction on 3.

We start with the case of ¢ = 0. If the claim were false in this case, then a
would be free from M7 over My. But as My is free from C over Ay, we have
(using symmetry, transitivity, and monotonicity) that a is free from A; over Ap, a
contradiction.

We consider now the case of i + 1. Suppose that a is free from M; 4 over M;, .
We argue by induction on j < i+ 2 that a is free from M; o over A; 11 U M1
where M_, := @.

The case of j = 0 is given by hypothesis. Suppose now the result for j (with
J <i+1). By construction, M;y;_; is free from C over M, 1_(j41)U Aiy1-5. By
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monotonicity and symmetry, we see that a is free from M; 15 over M; 1 _(j41)U
A;yq1. By transitivity (using the inductive hypothesis) we have that a is free from
Mo over My q_(j41) U Ay, as claimed.

Taking j = i + 2, we see that a is free from M; o over A;1;. By monotonicity,
a is free from A; 5 over A;11, a contradiction. O
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