
SUPERSTABILITY OF F -STRUCTURES

RAHIM MOOSA AND THOMAS SCANLON

The following note is a supplement to [1]. We will maintain the notation of [1]
throughout, and all numbered items to which we refer are from that paper. Theo-
rem 6.11 states that if M is a finitely generated R-module then Th(M,F) is stable.
As pointed out in Remark 6.12, the proof Theorem 6.11 yields a stronger conclu-
sion: Th(M,F) is superstable. These notes consist of detailed arguments for this
strengthening.

We wish to extend our notion of dimension for exponential F -sets (Definition 6.6)
to arbitrary groupless F -sets. First of all, we point out that δ-dimension (unlike
δ-degree) does not really depend on δ.

Lemma 0.1. Suppose M is a finitely generated R-module, δ > 0 is a multiple of δM ,
and S ∈ ExpM (δ). Suppose δ′ > 0 is another multiple of δM and S ∈ ExpM (δ′).
Then dimδ S = dimδ′ S.

Proof. Working instead with δ′δ, it suffices to deal with the case when δ′ is a multi-
ple of δ. Write S = FBa where a is a tuple from M and B is a δ-closed set. Then B
is also δ′-closed (see Remark 3.2). Now dimδ S is the Morley rank of [B]a computed
in (N, 0, σ, Pδ), while dimδ′ S is the Morley rank of [B]a computed in (N, 0, σ, Pδ′).
But these coincide. Indeed, both structures are of Morley rank 1 (Proposition A.1
and the bi-interpretation given by Proposition A.2), so that Morley rank is given
by algebraic dimension. From quantifier elimination for these structures (again by
Proposition A.1 and the bi-interpretation given by Proposition A.2), it follows that
algebraic closure in (N, 0, σ, Pδ) is the same as algebraic closure in (N, 0, σ, Pδ′).
Thus, algebraic dimensions agree, and therefore, also Morley ranks. �

Lemma 0.1 allows us to define an absolute dimension for exponential F -sets:

Definition 0.2. If S ∈ ExpM then the dimension of S, denoted by dim S, is the
δ-dimension of S for any δ > 0 a multiple of δM such that S ∈ ExpM (δ).

Lemma 0.3. Suppose S1, . . . , Sn, T1, . . . , Tm ∈ ExpM , and
n⋃

i=1

Si =
m⋃

j=1

Tj. Then,

max{dim Si : 1 ≤ i ≤ n} = max{dim Tj : 1 ≤ j ≤ m}.

Proof. First consider the case when n = 1, and let S := S1. Let δ > 0 be a multiple
of δM such that S, T1, . . . , Tm ∈ ExpM (δ). Write S = FBa and Tj = FCj bj for each
j = 1, . . . ,m, where B and the Cj ’s are δ-closed. Then, as each Tj ⊂ S, Tj = FDj a
where Dj is the δ-closed subset of B given by

Dj := {r ∈ B : for some s ∈ Cj , (r, s) ∈ log(a,−bj)
0}.
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So dimδ Tj = RM[Dj ]a. Also, B =
⋃m

j=1 Dj , and hence [B]a =
⋃m

j=1[Dj ]a. Com-
puting Morley rank in (N, 0, σ, Pδ) we have dimδ S = max{dimδ Tj : 1 ≤ j ≤ m}.

We have proved the n = 1 case of the Lemma. From this it follows that if
S ∈ ExpM and S ⊂

⋃m
j=1 Tj , then dim S ≤ max{dim Tj : 1 ≤ j ≤ m}. Indeed,

S =
⋃m

j=1(Tj∩S), and each Tj∩S is a finite union of exponential F -sets of dimension

at most dim Tj (see Remarks 6.5 and 6.7). It follows that if
n⋃

i=1

Si =
m⋃

j=1

Tj , then

max{dim Si : 1 ≤ i ≤ n} ≤ max{dim Tj : 1 ≤ j ≤ m}. By symmetry, we have
max{dim Si : 1 ≤ i ≤ n} = max{dim Tj : 1 ≤ j ≤ m}, as desired. �

We can thus extend the notion of dimension to cycle-free groupless F -sets:

Definition 0.4. Suppose M is a finitely generated R-module. For U ∈ OrbM , we
define the dimension of U to be

dim U = max{dim Si : 1 ≤ i ≤ n},

for any S1, . . . , Sn ∈ ExpM such that U =
n⋃

i=1

Si.

We wish to extend this definition to arbitrary groupless F -sets. Given U ∈
Groupless(M) there exists a finitely generated R-module M ′ ≥ M such that U ∈
OrbM ′ (by Lemma 2.7). One can, of course, define the dimension of U with respect
to M ′ to be the dimension of U computed as a cycle-free groupless F -set in M ′.
Suppose M ′′ ≥ M is another finitely generated R-module such that U ∈ OrbM ′′ .
Let N be a finitely generated R-module extending both M ′ and M ′′. Note that
for any S ∈ ExpM ′ , the dimension of S as computed in M ′ coincides with that
computed in N (since for any tuple a ∈ (M ′)n, a-equivalence on Nn does not
depend on whether one works with M ′ or N). It follows that the dimension of
U ∈ OrbM ′ is constant whether we compute it in M ′ or in N . Similarly for M ′′

and N . Hence the dimension of U ∈ Groupless(M) with respect to M ′ is equal to
the dimension of U with respect to M ′′. We can therefore define:

Definition 0.5. Suppose U ∈ Groupless(M). The dimension of U , denoted by
dim U , is defined to be the dimension of U with respect to M ′, where M ′ ≥ M is
any finitely generated R-module such that U ∈ OrbM ′ .

Lemma 0.6. (a) If U ∈ Groupless(M) and c ∈ M , then dim(c + U) = dim U .
(b) If U, V ∈ Groupless(M) and U ⊂ V , then dim U ≤ dim V .
(c) Suppose G ≤ M is a submodule, π : M → M/G is the quotient map, and

U ∈ Groupless(M). Then dim πU ≤ dim U .

Proof. Let M ′ ≥ M be such that U ∈ OrbM ′ . Let δ > 0 be a multiple of δM ′ such
that U ∈ OrbM ′(δ). Write U =

⋃n
i=1 Si, for some S1, . . . , Sn ∈ ExpM ′(δ). Then

dim U = max{dimδ Si : 1 ≤ i ≤ n}. On the other hand, c + U =
⋃n

i=1(c + Si), and
dimδ(c + Si) = dimδ Si for each i (see Remark 6.7). This proves part (a).

For part (b), let M ′ ≥ M be such that U, V ∈ OrbM ′ . Write U =
⋃n

i=1 Si and
V =

⋃m
j=1 Tj , for some S1, . . . , Sn, T1, . . . , Tm ∈ ExpM ′ . So each Si ⊂

⋃m
j=1 Tj . As

in the proof of Lemma 0.3 (or by Remark 6.7), dim Si ≤ max{dim Tj : 1 ≤ j ≤
m} = dim V . Hence dim U ≤ dim V , as desired.

For part (c), let M ′ ≥ M and δ > 0 be a multiple of δM ′ such that U ∈ OrbM
M ′(δ).

Write U =
⋃`

i=1 Si, where each Si ∈ ExpM
M ′(δ). Write Si = FBiai, where ai is a
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tuple from M ′ and Bi is δ-closed. Let π′ : M ′ → M ′/G be the quotient map.
Then πU =

⋃`
i=1 πSi and each πSi = FBiπ′(ai). It suffices therefore to show that

RM[Bi]ai ≥ RM[Bi]π′(ai) in (N, 0, σ, Pδ), for each i = 1, . . . , `. But this follows from
the observation that ai-equivalence is finer than π′(ai)-equivalence. �

We now prove the superstability of F -structures. Given stability, this is equiv-
alent to the assertion that there are no infinite forking chains. We prove this by
defining an ordinal valued rank which drops when a type forks. We work in a
sufficiently saturated elementary extension of M , ∗M .

For G ≤ M a submodule, we define d(G) := dimQ(M⊗Q). For U ∈ Groupless(M),
we define dG(U) to be the dimension of πU ∈ Groupless(M/G), where π is the quo-
tient map. We define

d(U,G) := 〈d(G), dG(U)〉 ∈ N× N = ω · 2.

Here we regard N× N as the ordinal ω · 2 via the lexicographic ordering.
Let q ∈ S1(N) be a type over an elementary substructure N � ∗M . We extend

the notation of the proof of Theorem 6.11 so that

DU,G(q) := {a ∈ ∗M : q(x) | ∗M ` x ∈ a + ∗U + ∗G}
where q | ∗M denotes the unique nonforking extension of q to ∗M . Note that as a
consequence of stability, DU,G(q) is definable over N , and as N � ∗M , if DU,G(q)
is non-empty then DU,G(q) ∩N is non-empty. We define

R(q) := min{d(U,G) : DU,G(q) 6= ∅, U ∈ Groupless(M), G ≤ M a submodule}.

Proposition 0.7. Let N � ∗M be an elementary substructure and p ∈ S1(∗M). If
p forks over N , then R(p � N) > R(p).

Proof. We show the contrapositive. Let q := p � N , and assume that R(p) ≥ R(q).
We will show that for any G ≤ M a submodule, and U ∈ Groupless(M), DU,G(p) is
N -definable. As in Theorem 6.11, this will prove that p is N -definable, and hence
p does not fork over N .

Fix G ≤ M submodule, and U ∈ Groupless(M) such that DU,G(p) is non-empty
(else it is clearly N -definable). Also, let V ∈ Groupless(M) and H ≤ M be such
that DV,H(q) 6= ∅ and d(V,G) = R(q). Fix c ∈ DV,H(q) ∩ N . Let W1, . . . ,W` ∈
Groupless(M) be such that for any b ∈ ∗M ,

(1) (b + ∗U + ∗G) ∩ (c + ∗V + ∗H) =
⋃
i∈J

dj + ∗Wj + ∗(G ∩H)

for some J ⊂ {1, . . . , `} and dj ∈ ∗M (using Corollary 5.5). Note that b ∈ DU,G(p)
if and only if there exists J ⊂ {1, . . . , `} and (dj)j∈J such that equation (1) holds
and dj ∈ DWj ,G∩H(p) for some j ∈ J . As c ∈ N , it suffices to show that each
DWj ,G∩H(p) is N -definable. That is we may assume G ≤ H.

As d(G) ≥ d(H), it must be that d(G) = d(H) and G is of finite index in H. So

for some h1, . . . , hn ∈ H, ∗V + ∗H =
n⋃

i=1

∗(hi + V ) + ∗G. Hence Dhi+V,G(q) 6= ∅ for

some i. Also dG(hi + V ) = dG(V ) ≤ dH(V ) by Lemma 0.6 parts (a) and (c). By
the minimality of d(V,H), we have that d(hi + V,G) = d(V,H) = R(q). That is,
replacing V with hi + V and H with G, we may assume that G = H.

Letting M = M/G, we work in ∗M := ∗M/∗G with the induced structure of an
elementary extension of M . Let N := N/(∗G ∩ N) � ∗M , and let π denote the
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quotient map. If p = tp(α/∗M) and q = tp(α/N), then let p := tp(πα/∗M), and
its restriction q := tp(πα/N). In order to show that DU,G(p) is definable over N ,
it suffices to show that DπU,0(p) is N -definable.

Let M ′ ≥ M be a finitely generated R-module, and δ > 0 a multiple of δM ′ ,
such that πU, πV ∈ OrbM

M ′(δ). Write πV =
⋃n

i=1 Ti where Ti ∈ ExpM
M ′(δ). Using

Proposition A.6, we may assume that each degδ(Ti) = 1. Since DV,G(q) is non-
empty, for some j ∈ {1, . . . , n}, DTj ,0(q) is also non-empty. We claim that it suffices
to show:

(2) If T ∈ ExpM
M ′(δ) and DT,0(p) 6= ∅, then (dimδ,degδ)(T ) ≥ (dimδ,degδ)(Tj).

Indeed, from the proof of Theorem 6.11, if (2) holds, then for any b ∈ DTj ,0(p),
DπU,0(p) will be b-definable. Since DTj ,0(q)∩N 6= ∅, we would have that DπU,0(p)
is definable over N , as desired.

To show (2), note that as degδ Tj = 1, we need only show that dimδ T ≥ dimδ Tj

As T ∈ Groupless(M), there is W ∈ Groupless(M) such that πW = T . Moreover,
as DT,0(p) is non-empty, so is DW,G(p). It follows that

〈d(G),dimδ T 〉 = d(W,G) ≥ R(p) ≥ R(q) = d(V,G) ≥ 〈d(G),dimδ Tj〉.

This proves (2) and hence the Proposition. �

Corollary 0.8. For M a finitely generated R-module, Th(M,F) is superstable.

Proof. By Proposition 0.7, there is no infinite forking chain of 1-types over ele-
mentary substructures. Superstability follows from the following lemma (which is
probably well-known). �

Lemma 0.9. Let T be a simple theory. Then T is supersimple just in case there
is no infinite elementary chain M0 � M1 � M2 � · · ·

⋃
Mi =: M |= T and type

p ∈ S1(M) such that p � Mi+1 forks over Mi for all i ∈ ω.

Proof. Suppose that T is not supersimple and seek a contradiction. Then we can
find some model M |= T , an increasing sequence A0 ⊆ A1 ⊆ · · ·M of subsets of M
and an element a ∈ M such that tp(a/Ai+1) forks over Ai for each i.

Working in a definitional expansion of the language of T we may assume that T
eliminates quantifiers so that every extension of models of T is elementary.

Let C := {a} ∪
⋃∞

i=0 Ai. We build the sequence of models 〈Mi | i ∈ ω〉 by
recursion. Let M0 be a model containing A0 with M0 free from C over A0. For
example, let M0 realize a nonforking extension of tp(M/A0) to C. At stage i + 1
let Mi+1 be a model containing Ai+1 ∪ Mi which is free from C over Ai+1 ∪ Mi.
Set p := tp(a/

⋃
i∈ω Mi).

We claim that p � Mi+1 forks over Mi for each i. We proceed by induction on i.
We start with the case of i = 0. If the claim were false in this case, then a

would be free from M1 over M0. But as M0 is free from C over A0, we have
(using symmetry, transitivity, and monotonicity) that a is free from A1 over A0, a
contradiction.

We consider now the case of i + 1. Suppose that a is free from Mi+2 over Mi+1.
We argue by induction on j ≤ i + 2 that a is free from Mi+2 over Ai+1 ∪Mi+1−j

where M−1 := ∅.
The case of j = 0 is given by hypothesis. Suppose now the result for j (with

j ≤ i + 1). By construction, Mi+1−j is free from C over Mi+1−(j+1) ∪ Ai+1−j . By
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monotonicity and symmetry, we see that a is free from Mi+1−j over Mi+1−(j+1) ∪
Ai+1. By transitivity (using the inductive hypothesis) we have that a is free from
Mi+2 over Mi+1−(j+1) ∪Ai+1, as claimed.

Taking j = i + 2, we see that a is free from Mi+2 over Ai+1. By monotonicity,
a is free from Ai+2 over Ai+1, a contradiction. �
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