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Abstract. We prove versions of the Mordell-Lang conjecture for semiabelian

varieties defined over fields of positive characteristic.

Introduction

Faltings proved the Mordell-Lang conjecture (itself a generalization of the Mordell
conjecture) in the following form [1].

Theorem 0.1 (Faltings). Let G be a semiabelian variety defined over the field of
complex numbers C. Let X ⊆ G be a closed subvariety and Γ ≤ G(C) a finitely
generated subgroup of the group of C-points on G. Then X(C)∩Γ is a finite union
of cosets of subgroups of Γ.

Theorem 0.1 has been generalized in various ways. The reader may consult [4]
for a discussion of the history of this problem and some of its generalizations. In
attempting to generalize the Mordell-Lang conjecture to positive characteristic one
encounters obstructions in even the simplest cases.

Let K = Fp(t) be the field of rational functions over the field of size p. Consider
the square of the multiplicative group G := G2

m regarded as the complement of
the coordinate axes in the plane, X the subvariety defined by x + y = 1, and Γ
the subgroup of G(K) generated by (t, 1− t). One checks easily that X(K) ∩ Γ =
{(tpm

, 1− tp
m

) : m ∈ N}. Visibly, this set cannot be expressed as a finite union of
cosets of subgroups of Γ.

Hrushovski salvaged a version of the Mordell-Lang conjecture in positive charac-
teristic by treating varieties defined over finite fields as exceptional [2]. The present
authors proved a version of the Mordell-Lang conjecture for semiabelian varieties
defined over finite fields in [5]. Moreover, they extracted the model theoretic con-
tent of this version of the Mordell-Lang conjecture in analogy to Pillay’s analysis
of Theorem 0.1. That is, the original Mordell-Lang conjecture may be rephrased
as if G is a semiabelian variety defined over C and Γ ≤ G(C) is a finitely generated
subgroup of its C-points, then the induced structure on Γ is stable and weakly nor-
mal. The bulk of the work in [5] is directed at a quantifier elimination theorem for
the induced structure on the R-rational points of semiabelian schemes over finite
fields where R is a finitely generated domain extending the field of definition.

In this current paper we survey the methods and results of [5] while extending
those results to giving, among other results, an absolute version of the Mordell-Lang
conjecture in positive characteristic.
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The structure of this paper is as follows. In Section 1 we survey the main methods
and results of [5]. In Section 2 we prove a version of the Mordell-Lang conjecture
for groups of the form G(R) where G is a semiabelian variety over a finite field Fq

and R is the ring of regular functions of some irreducible affine variety over Falg
q .

While the group G(R) is not finitely generated, the methods of [5] apply directly
to this problem. In Section 3 we prove an absolute version of the Mordell-Lang
conjecture.

We thank Luc Bélair for inviting us to write this paper for these proceedings.
We are grateful to the organizers (especially Paola D’Aquino) of the Ravello Eu-
roconference on Model Theory for putting together and running such a wonderful
meeting. The second author thanks Dragos Ghioca for discussing some problems
related to this paper. As mentioned below, some extensions of theorems proved
here will appear in Ghioca’s thesis.

1. F -sets and varieties defined over finite fields

The counter-example to an immediate translation of the Mordell-Lang conjec-
ture to positive characteristic described in the introduction comes close to being
paradigmatic. Frobenius orbits give the primary obstruction to finiteness while
sums of such orbits and sums with groups give the others.

Let us consider a few examples before delving into a technical discussion. Before
we can say much about these examples, we need to recall the notion of a Frobenius
morphism.

Let k = Fq be the field of q elements. If R is any k-algebra, then the function
τq : R → R defined by x 7→ xq is a morphism of k-algebras which we call the
q-power Frobenus or just the Frobenius if q is clear from the context. If K is an
algebraically closed field extending k and X ⊆ An is an affine variety over K, then
X(q) is the Zariski closure of the set {(aq

1, . . . , a
q
n) : (a1, . . . , an) ∈ X(K)}, and the

q-power Frobenius defined co-ordinatewise on An maps X(R) to X(q)(R). Visibly,
the function (x1, . . . , xn) 7→ (xq

1, . . . , x
q
n) is a regular morphism of algebraic varieties.

We denote the induced morphism on X by F : X → X(q) and refer to F as the
Frobenius morphism of X induced by the the q-power Frobenius. This construction
can be carried out in a co-ordinate free manner that extends to arbitrary algebraic
varieties (not just affine ones). Moreover, it is not hard to see that if G is an
algebraic group, then the Frobenius morphism F : G → G(q) is a morphism of
algebraic groups.

Notice that if X is defined over k = Fq, then X(q) = X and F is a morphism from
X to itself. We shall use this construction mostly in the case of G a commutative
algebraic group over k.
Example 1.1. Let C be a smooth curve of genus at least three over a finite field
k = Fq. We consider C as a subvariety of its Jacobian JC embedded via a k-
rational cycle. Let F : JC → JC be the Frobenius morphism coming from the
q-power Frobenius. Let K := k(C) be the function field of C and set Γ := JC(K).
The automorphism group of C is finite and we have

C(Kalg) ∩ Γ = C(K) = C(k) ∪ {Fnγ : n ∈ N, γ ∈ Aut(C)}.
This set is a union of finitely many Frobenius orbits. Now consider X := C + C.
Visibly, we have X(Kalg) ∩ Γ = X(K) contains

{a+Fnγ : a ∈ C(k), γ ∈ Aut(C), n ∈ N}∪{Fmγ +Fnδ : γ, δ ∈ Aut(C),m, n ∈ N}.
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If we choose C so the summation map C×C → C +C is an isomorphism, then this
containment can be replaced by an equality. Finally, to obtain the most general
example we should take a sum with a group. For instance, we could think of JC

as an algebraic subgroup of JC × JC via x 7→ (x, 0). If we set Y := X + (0× JC),
then Y (K) = X(K) + (0× JC)(K).

In order to give a precise statement about the induced structure on the groups
of integral points on semiabelian schemes over finite fields, we abstract from this
geometric context to a certain general class of modules
Definition 1.2. A Frobenius ring is a commutative ring Z[F ] satisfying the fol-
lowing conditions.

• As the notation suggests, Z[F ] is a simple extension of the ring of integers
generated by a distinguished element F .

• Z[F ] is a finite integral extension of Z.
• F is not a zero divisor in Z[F ].
• The ideal F∞Z[F ] :=

⋂
n≥0

FnZ[F ] is trivial.

These conditions hold for our intended example: take G a semiabelian variety
over a finite field with F : G → G the corresponding Frobenius morphism. The
ring Z[F ] is then the subring of the endomorphism ring of G generated by F .

From now on, when we write Z[F ] we mean that this ring is a Frobenius ring.
With the definition of a Frobenius ring in place we may define F -sets.
Definition 1.3. If M is a Z[F ]-module, a ∈ M , and δ ∈ Z+ is a positive integer,
then we denote the F δ orbit of a by S(a; δ) := {F δna : n ∈ N}. If a1, . . . , an ∈
M is a sequence of elements of M and δ1, . . . , δn ∈ Z+ is a sequence of positive
integers of the same length, then we denote the sum of the F δi orbits of the ais
by S(~a;~δ) :=

∑n
i=1 S(ai; δi) = {

∑n
i=1 F δimiai : (m1, . . . ,mn) ∈ Nn}. A set of the

form b + S(~a;~δ) + H with b ∈ M and H ≤ M a Z[F `]-submodule of M for some `
is called a cycle-free F -set. If H is the trivial group, then we refer to such a set as
a groupless cycle-free F -set.
Remark 1.4. Definition 1.3 differs from the definition of cycle-free F -set as used
in [5] in three respects. First, in [5], M is taken to be finitely generated. Secondly,
the groups H were required to be Z[F ]-modules rather than merely Z[F `]-modules
for some `. Thirdly, in [5] a finite union of cycle-free F -sets was considered to be a
cycle-free F -set itself.

Note that if ` ∈ Z+ is a positive integer, then any F `-set is automatically an
F -set. Conversely, any F -set may be expressed as a finite union of F `-sets.

With these definitions in place we can state a version of the main Mordell-Lang
theorem of [5].
Theorem 1.5. Let G be a semiabelian variety defined over a finite field, F : G → G
the corresponding Frobenius morphism, and K an algebraically closed field extending
the field of definition of G. If Γ ≤ G(K) is a finitely generated Z[F ]-submodule of
G(K) and X ⊆ G is a closed subvariety, then X(K)∩Γ is a finite union of (cycle-
free) F -sets.
Remark 1.6. Comparing the hypothesis of Theorem 1.5 with those of the Mordell-
Lang statement for characteristic 0 (Theorem 0.1), notice that finitely generated
subgroups have been replaced by finitely generated Z[F ]-submodules (that is, we
require Γ to be closed under F ). Nevertheless, some of the natural cases are included
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in this statement. For example, if R/Fq is a finitely generated domain, then G(R) is
closed under F , and our theorem does solve the problem of describing the R-rational
points of subvarieties of semiabelian varieties over finite fields.

In the statement of Theorem 1.5 we have been a bit loose with the meaning
of “F -set.” In our definition of “F -set” we take parameters b, a1, . . . , an from the
module M . In Theorem 1.5 there are two reasonable interpretations of M : Γ and
G(K). The theorem is correct as written with M = G(K), but it is false with Γ
unless we drop the parenthetical “cycle-free” and give a more intrinsic notion of
F -set. Before doing so we consider yet another example.

Example 1.7. Let C be a smooth curve of genus at least two defined over a finite
field k, embedded in its Jacobian JC and having a trivial automorphism group. Let
K := k(C) be the function field of C and let γ ∈ C(K) ⊆ JC(K) be the identity
morphism of C thought of as an element of JC(K). Let F : JC → JC be the
Frobenius morphism of JC corresponding to k, γ′ := −γ+Fγ ∈ JC(K), Γ := Z[F ]γ
the Z[F ]-module generated by γ, and Γ′ := Z[F ]γ′ the Z[F ]-module generated by
γ′. Let Y := C − γ. It is an easy matter to see that C(K) ∩ Γ = S(γ; 1). Thus,
Y (K)∩Γ = S(γ; 1)− γ. However, S(γ; 1)− γ = {0}∪ {

∑n
i=0 F iγ′ : n ∈ N} ⊆ Γ′ so

that we have Y (K)∩Γ′ = S(γ; 1)−γ. The set on the righthand side of the equality
may be expressed as a cycle-free F -set in the sense of Γ, but not in the sense of Γ′.

We refer to sets of the form appearing in the description of Y (K) ∩ Γ′ as cycles
and taking them as a the basis of our description of F -sets we obtain an intrinsic
form of the induced structure. More precisely, we have the following definition.

Definition 1.8. If M is a Z[F ]-module, a ∈ M , and δ ∈ Z+ is a positive integer,
then the F δ cycle of a is the set C(a; δ) := {

∑n
i=0 F iδa : i ∈ N}. If a1, . . . , am ∈ M

is a sequence of elements of M and δ1, . . . , δm ∈ Z+ is a sequence of positive
integers of the same length, then we denote the sum of the F δj cycles of the ajs by
C(~a;~δ) :=

∑m
j=1 C(aj ; δj) = {

∑m
j=1

∑nj

i=0 F iδj aj : (n1, . . . , nm) ∈ Nm}. An F -set
in a Z[F ]-module M is a set of the form b + C(~a;~δ) + H where b, a1, . . . , am ∈ M
are elements of M and H ≤ M is a Z[F `]-submodule of M for some `.

It turns out that every cycle-free F -set may be expressed as a finite union of
F -sets (as defined with cycles in place of orbits). For the sake of illustration, we
note that the single orbit S(a; δ) may be expressed as {a} ∪ a + C(F δa − a; δ) =
(a + C(0; 1)) ∪ (a + C(F δa− a; δ).Thus, we do not lose any structure by replacing
orbits with cycles.

Moreover, if X ⊆ M is an F -set in some module M , then there is an embedding
of M into some other module M ′ so that X is a finite union of cycle-free F -sets
in the sense of M ′. In this case, it is a matter of reversing the operations of the
previous paragraph. That is, if F δb − b = a, then we may express C(a; δ) as
−b + S(F δb; δ). One checks (using properties of Frobenius rings) that if M ′ is the
quotient of M ⊕Z[F ] by the submodule generated by (−a, F δ − 1), then there is a
natural embedding of M into M ′ and one may take b to be the image of (0, 1) in M ′.
In the case that M arises as a submodule of G(K), the K-points of a semiabelian
variety G over a finite field with K algebraically closed, then one can find b ∈ G(K)
as the map (F − 1) : G(K) → G(K) is an isogeny and therefore surjective.

If one passes from a module to an extension, then while the class of cycle-free
sets might change, the class of finite unions of F -sets does not. That is, if M ≤ M ′

is an extension of Z[F ]-modules and X ⊆ M is a subset of M which is an F -set in
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the sense of M ′, then X is already a union of F -set in the sense of M . So, to say
that a set is a union of F -sets (in the sense of cycles) is the same as to say that it
is a union of cycle-free F -sets in the sense of some extension module.

The conclusion of Theorem 1.5 should be that X(K)∩Γ is a finite union of F -sets.
Our proof of Theorem 1.5 is (mostly) an exercise in elementary algebraic geometry.
There is a point in the proof at which a detailed analysis of the combinatorics of
F -sets plays a decisive rôle. We sketch the proof in a more general situation in
Section 2. For the remainder of this section we discuss the combinatorics of F -sets
and their consequences for the model theory of these structures.

Suppose S := b+S(a1, . . . , am; δ1, . . . , δm) and T := d+S(c1, . . . , cn; γ1, . . . , γn)
are two groupless cycle-free F -sets. How does one study their intersection? For
simplicity let us consider the case when all the δi’s and γj ’s are 1. Trivially, we can
express S∩T as the set of all b+F r1a1 + · · ·+F rmam such that for some s1, . . . sn,

F r1a1 + · · ·+ F rmam + F s1(−c1) + · · ·+ F sn(−cn) = d− b

We are thus lead to consider “logarithmic sets” of tuples of natural numbers.
Definition 1.9. Given x = (x1, . . . , x`) ∈ M ` and Y ⊆ M , we define

logx Y := {(r1, . . . , r`) ∈ N` : F r1x1 + · · ·+ F r`x` ∈ Y }
The logarithmic set logx Y describes the ways that elements of Y may be ex-

pressed as a sum of iterates of F applied to the xi’s.
Going in the other direction we have a notion of exponentiation as well.

Definition 1.10. Let B ⊆ N` be a set of `-tuples of natural numbers. We define

FB := {(F b1 , . . . , F b`) ∈ Z[F ]` : (b1, . . . , b`) ∈ B}
If x = (x1, . . . , x`) ∈ M `, then

FBx := {
∑̀
i=1

F bixi : (b1, . . . , b`) ∈ B}

The key technical observation in [5] is that
Fact 1.11. If M is a Z[F ]-module, x ∈ M `, and y ∈ M , then there is a positive
integer δ such that logx{y} is the projection of a positive quantifier-free definable
set in the structure (N, 0, σ, Pδ) on the natural numbers, where σ is the successor
function and Pδ(x) is a predicate that is interpreted as x ≡ 0 mod δ.

Now a projection of a positive quantifier-free definable set in (N, 0, σ, Pδ) is called
δ-closed and is a finite union of sets of the form t + V where t ∈ N` and V ⊂ N`

is given by a conjunction of finitely many equations of the form x ≡ q mod δ, for
some 0 ≤ q < δ; x = σs(y), for some s ∈ N; or x = p, for some p ∈ N. Returning
to our description of the intersection of cycle-free groupless F -sets S and T above,
and using Fact 1.11, we see that there is a δ-closed set B ⊂ Nm such that

S ∩ T = b + FBa

It is then not hard to see that S ∩ T is a finite union of cycle-free F -sets in M .
Using this technique, one shows:
Fact 1.12. Suppose M is a Z[F ]-module.

(a) An intersection of two groupless F -sets is a finite union of groupless F -
sets. An intersection of two groupless cycle-free F -sets is a finite union of
groupless cycle-free F -sets.
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(b) If N ≤ M is a submodule and U is an F -set in M , then U ∩N is a finite
union of F -sets in N .

The consequences of Fact 1.11 go far beyond an understanding intersections of
F -sets. For example, given a = (a1, . . . a`) ∈ M `, we can define an equivalence
relation, ∼a, on N`, by r ∼a s ⇐⇒ F r1a1 + · · · + F r`a` = F s1a1 + · · · + F s`a`.
It follows immediately from Fact 1.11 that Ea is a definable equivalence relation
in (N, 0, σ, Pδ) for some δ > 0. In this way, one can study the cycle-free group-
less F -sets that are based on a by considering sets interpretable in the structures
(N, 0, σ, Pδ).

These structures on N, which are naturally bi-interpretable with (N, 0, σ) itself,
are structurally extremely simple. For example, they are of Morley rank 1, ad-
mit elimination of quantifiers and weak elimination of imaginaries, have definable
Skolem functions, and are of trivial geometry. Via the “logarithmic” equivalence re-
lations described above, these properties impose heavy restrictions on the behaviour
of F -sets.

Let us say a word about the combinatorics behind Fact 1.11. We reduce to
the case that M is finitely generated by observing that the intersection must be
contained in the Z[F ]-module generated by the groupless F -sets in question. Let
K =

⋃
n ker Fn. As M is finitely generated, K = kerFN1 for some N1 ≥ 0. It

follows that F is injective on F∞M :=
∞⋂

n=0

FnM . A consequence of Nakayama’s

Lemma and the fact that Z[F ] is a Frobenius ring is that F∞M is a finite set. (In
fact, this consequence was one of the motivating factors behind the definition of a
Frobenius ring.) It follows that some positive power of F must fix F∞M pointwise.
The δ that appears in Fact 1.11 is this positive integer.

For each i ≥ 0, let Mi = K + F iM . These are the points that are F i divisible
modulo K. We obtain a filtration of M , and define Mω to be the intersection of
this descending chain of Z[F ]-submodules: M0 = M ≥ M1 ≥ M2 ≥ · · · ≥ Mω =
∞⋂

n=0

Mn. This in turn induces a valuation on M , v : M → ω + 1, given by v(x) ≥ n

if and only if x ∈ Mn. Properties of the valuation are then used to describe the
shape that the logarithmic sets can take.

This analysis leads to a quantifier elimination and stability theorem for Z[F ]-
modules with F -sets.
Theorem 1.13 (Theorems 5.12 and 6.11 of [5]). Let M be a Z[F ]-module. Consider
M as a structure in the language L having a predicate for each F -set in each
Cartesian power of M . Then, M admits elimination of quantifiers in L and is
stable.

Theorem 1.13 together with Theorem 1.5 implies the stability of the induced
structure on a finitely generated submodule of a semiabelian variety defined over a
finite field.

2. A geometric version

In this section we prove a geometric version of Theorem 1.5. This version gen-
eralizes our previous theorem, but the proof follows a similar scheme.

We consider the case of G a semiabelian variety defined over a finite field k,
F : G → G the corresponding Frobenius morphism, K ≥ k an algebraically closed
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extension field of k, and Γ = Θ + G(kalg) where Θ ≤ G(K) is a finitely generated
Z[F ]-module. We obtain an example of such a situation by taking R a finitely
generated, integral, commutative kalg-algebra and letting Γ := G(R) be the group
of R-points on G. By the Lang-Néron theorem, Γ/G(kalg) is a finitely generated
group. Let S ≤ R be a finitely generated k-algebra such that G(S) surjects onto
Γ/G(kalg). Then Γ = Θ + G(kalg) where Θ := G(S) is a finitely generated Z[F ]-
module.

Of course, we cannot expect X(K) ∩ Γ to be a finite union of F -sets for X ⊆ G
a general algebraic subvariety. For example, if X is itself defined over a finite
field, then X(K) ∩ Γ contains X(kalg). However, this is essentially the only extra
complication.
Theorem 2.1. If X ⊆ G is a closed subvariety of G, then X(K) ∩ Γ is a finite
union of sets of the form S + Y (kalg) where S ⊆ Γ is an F -set and Y ⊆ G is a
closed subvariety over kalg.

Proof. We work by induction on dim X. Replacing X with the Zariski closure of
X(K)∩Γ we may assume that X(K)∩Γ is Zariski dense in X. Taking finite unions,
we may assume that X is irreducible. Passing to a quotient, we may assume that
the stabilizer of X is trivial.

Note that G(kalg) = F∞Γ :=
⋂

n≥0 FnΓ. It follows that the natural maps
Θ/FnΘ → Γ/FnΓ are isomorphisms for every n ∈ Z+. From Lemma 7.5 of [5] it
follows that Θ/FnΘ is finite for each n ∈ Z+ so that the same is true of Γ/FnΓ.

We break into two cases. In the first case there is some n such that no coset of
FnΓ in Γ is Zariski dense in X while in the second case for each n ∈ Z+ there is
some γn ∈ Γ with γn + FnΓ Zariski dense in X.

In the first case, let A ⊆ Γ be a finite set of coset representatives for FnΓ in Γ.
For each a ∈ A let Ya := X(K) ∩ (a + FnΓ). We have reduced to the case that
X(K) ∩ Γ is Zariski dense in X so that

X = X(K) ∩ Γ

=
⋃
a∈A

X(K) ∩ (a + FnΓ)

=
⋃
a∈A

X(K) ∩ (a + FnΓ)

=
⋃
a∈A

Ya

As we are in the first case, we have that dim Ya < dim X. As X is irreducible
and A is finite, we have X 6=

⋃
a∈A Ya. This is a contradiction.

So, we must be in the second case.
Let L be the separable closure of a finitely generated extension of kalg with

G(L) ≥ Γ. Let U be a nonprincipal ultrafilter on ω and γ := [(γn)]U be the limit of
(γn)n∈ω with respect to U . Let ∗L be the ultrapower of L with respect to U , ∗K be
the ultrapower of K, and ∗Γ be the ultrapower of Γ. Note that F∞∗Γ ≤ G((∗L)p∞).

To say that a particular type definable set (in some expansion of the language
of rings) is Zariski dense in a variety is a type definable condition on the canonical
parameter of the variety. Thus, X(∗K) ∩ (γ + F∞∗Γ) is Zariski dense in X. That
is, X − γ meets G((∗L)p∞) in a Zariski dense set. So X − γ is defined over (∗L)p∞ .
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Building on work of Bouscaren and Poizat (the details are given in Proposition
7.7 of [5]) one shows that the pair of fields (∗K, ∗Lp∞) is an elementary extension
of the pair (K, kalg). Thus, we find γ′ ∈ G(K) with X − γ′ defined over kalg.

Let Γ′ be the module generated by Γ and γ′. If we show that X(K)∩Γ′ has the
correct form, then the result follows for X(K) ∩ Γ. Indeed, suppose X(K) ∩ Γ′ =⋃
i

Si + Yi(kalg), where Si ⊆ Γ′ is an F -set and Yi ⊆ G is a subvariety over kalg.

Fix i ≤ ` and notice that Si ∩ Γ =
⋃
j

Ti,j for appropriate F -sets Ti,j ⊆ Γ as

the intersection of an F -set with a submodule is a union of F -sets. As Yi(kalg) ⊆
G(kalg) ≤ Γ we have that [Si +Yi(kalg)]∩Γ = (Si∩Γ)+Yi(kalg) =

⋃
j

Ti,j +Yi(kalg).

Thus, X(K) ∩ Γ =
⋃
i,j

Ti,j + Yi(kalg).

Thus, we may assume that Γ = Γ′. Replacing X with X − γ′ and F with some
power of itself, we may assume that X is defined over k.

We note for the sequel that there is a natural number n such that if a ∈ (Γ\FΓ),
then X + a is not defined over Lqn

.The proof of this assertion is given during
the course of the proof of Theorem 7.8 of [5] and follows along the lines of our
reduction to the case that X is defined over k. It follows that if a ∈ Γ \ FΓ,
then (X + a)(K) ∩ FnΓ is not equal to X and therefore has lower dimension. As
FnΓ has finite index in FΓ, one obtains from this that (X + a)(K) ∩ FΓ has lower
dimension than X for all a ∈ Γ \ FΓ.

Let A ⊆ Γ be a finite set of coset representatives for the non-zero cosets of FΓ
in Γ. Let Za := (X − a)(K) ∩ FΓ as above.

By induction we have that

X(K) ∩ (Γ \ FΓ) =
⋃
a∈A

X(K) ∩ (a + FΓ)

=
⋃
a∈A

a + [(X − a)(K) ∩ FΓ]

=
⋃
a∈A

a + Za(K) ∩ FΓ

=
n⋃

i=1

Si + Yi(kalg)

where each Si is an F -set and Zi is an algebraic variety defined over kalg. Let m
be sufficiently divisible so that each Yi is defined over the extension of k of degree
m. We compute.
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X(K) ∩ (Γ \ F∞Γ) =
∞⋃

t=0

X(K) ∩ (F tΓ \ F t+1Γ)

=
∞⋃

j=0

m−1⋃
`=0

X(K) ∩ [Fmj+`Γ \ Fmj+`+1Γ]

=
∞⋃

j=0

Fmj [
m−1⋃
`=0

F `(X(K) ∩ (Γ \ FΓ))]

=
∞⋃

j=0

Fmj [
m−1⋃
`=0

n⋃
i=1

F `Si + Y
(q`)
i (kalg)]

=
m−1⋃
`=0

n⋃
i=1

∞⋃
j=0

Fmj(F `Si) + Y
(q`)
i (kalg)

By Corollary 7.3 of [5], the set
⋃∞

j=0 Fmj(F `Si) is a subset of a finite union of
F -sets that are themselves contained in X. Thus, X(K)∩ [Γ\F∞Γ] is a finite union
of sets of the requisite form. As F∞Γ = G(kalg), we have X(K)∩F∞Γ = X(kalg).
This observation completes the proof. �

Further Extensions
Dragos Ghioca has extended this argument to some other cases. Ghioca has

considered the case of t-adic closures of finitely generated groups. That is, if k is a
finite field and G is a semiabelian variety over k((t)), then the group G(k((t))) is
naturally a topological group with the topology inherited from the t-adic topology
on k((t)). If Γ ≤ G(k((t))) is a finitely generated group, then one can consider
Γ, the closure of Γ with respect to this topology. Ghioca has shown that when
G is strongly isotrivial, Γ ≤ G(k(((t))) is a finitely generated Z[F ]-module, and
X ⊆ G is a closed subvariety, then X(k((t)))∩Γ is a finite union of sets of the form
a + S + [H(k((t)))∩ Γ] where S is a groupless F -set, a is a point, and H ≤ G is an
algebraic subgroup.

Ghioca has also extended this study to purely inseparable extensions.
Theorem 2.2 (Ghioca). Let G be a semiabelian variety over a finite field Fq and
let F : G → G be the corresponding Frobenius morphism. Let R be a finitely
generated integral domain extending k. Let K be the algebraic closure of the fraction
field of R and let R′ := {x ∈ K : (∃n ∈ Z+)xqn ∈ R} be the perfect closure
of R in K. [Note that F : G(R′) → G(R′) is an automorphism of this group.]
Then, if X ⊆ G is a subvariety of G the set X(R′) is a finite union of sets of
the form a + H(R′) + {

∑n
i=1 F δimibi : ~m ∈ Zn} for some a, b1, . . . , bn ∈ G(K),

δ1, . . . , δn ∈ Z+, and H ≤ G an algebraic subgroup.
Theorem 2.2 follows from the uniform version of Theorem 1.5. These results will

appear as parts of Ghioca’s doctoral dissertation.

3. Absolute Mordell-Lang

In the introduction we said that Hrushovski salvaged the Mordell-Lang conjec-
ture in positive characteristic by treating the case of varieties defined over finite
fields as exceptions [2]. It would be fairer to say that he reduced the general problem
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to the case of varieties defined over finite fields. Let us recall what Hrushovski actu-
ally showed. We begin by fixing some notation. Let p be a prime number, k := Falg

p

be the algebraic closure of the prime field, and let K be any algebraically closed field
extending k. If G is a semi-abelian variety over K, then a closed subvariety X ⊆ G
is said to be special if it is of the form c + h−1(X◦), where c ∈ G(K), h : G1 → G◦
is a surjective morphism from an algebraic subgroup G1 ⊂ G to a group variety G◦
over k, and X◦ ⊂ G◦ is a closed subvariety also over k. Note, for instance, that
translates of algebraic subgroups of G are special in this sense. Hrushovski’s theo-
rem (restricted to the case of finitely generated subgroups of semiabelian varieties
in characteristic p) then states:
Theorem 3.1 (Relative Mordell-Lang – Characteristic p). Suppose G is a semi-
abelian variety over K, X ⊂ G is a closed subvariety, and Γ ≤ G(K) is a finitely
generated subgroup of the K-points. Then there are special closed subvarieties

X1, . . . , X` ⊂ X such that X(K) ∩ Γ =
⋃̀
i=1

Xi(K) ∩ Γ.

It is instructive to consider what happens in two extreme cases. Suppose G is
an abelian variety such that no subabelian variety of G admits a nontrivial map to
an abelian variety over k. We say that G is of k-trace zero. It follows that the only
special subvarieties of G are the translates of abelian subvarieties. Hence in this
case Theorem 3.1 says that X(K) ∩ Γ is a finite union of cosets of Γ – that is, the
conclusion of the characteristic 0 Mordell-Lang conjecture holds in charateristic p
for abelian varieties of k-trace zero.

The other extreme case is when G is itself defined over k. In this case the theorem
says that X(K) ∩ Γ is a finite union of sets of the form X ′(K) ∩ Γ where X ′ is a
translate of a subvariety of G over k. However, it does not describe what these
latter intersections look like. This is the case we considered in [5] (and dicussed in
Section 1 of the current paper); showing, under the additional assumption that Γ
is closed under F , that X(K) ∩ Γ is a finite union of F -sets (Theorem 1.5).

For all intermediate cases, Hrushovski’s theorem says (loosely speaking) that
the failure of the conclusion of the characteristic 0 Mordell-Lang conjecture in
characteristic p comes from semiabelian varieties over finite fields. This being the
case, our results should give a general solution to the Mordell-Lang problem in
positive characteristic. As there are several possible interpretations of the problem,
we cannot rightly claim to have a complete solution. Nevertheless, in this section
we describe one such solution.

To pass from the case of semiabelian varieties defined over a finite field to the
general case, we must first consider weakly isotrivial varieties.

In what follows k := Falg
p is the algebraic closure of the prime field and U is

an uncountable algebraically closed field of characteristic p. All varieties and mor-
phisms, unless otherwise stated, will be defined over U. All fields will be contained
in U. Also, defined over will be meant in the algebro-goemetric sense (as opposed
to the model-theoretic sense). Moreover, we restict attention to the case of abelian
varieties.

We begin with some generalities on the notion of isotriviality and trace.
Definition 3.2. Suppose X is a variety.

(a) X is strongly isotrivial if it is defined over k.
(b) X is isotrivial if there is a variety Y over k, and an isomorphism f : Y → X.
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(c) X is weakly isotrivial if there exists a variety Y over k, and a purely insep-
arable surjective morphism f : Y → X.

Note that in both parts (b) and (c) of the definition, the morphism f need not
be over the field of definition of X. That is, additional parameters may be required
to witness (weak) isotriviality. Also, recall that at the level of U-rational points,
a purely inseparable morphism is just a morphism that is a bijection between its
domain and its image.
Definition 3.3. Let K/k be any field extension, and G an abelian variety over
K. A K/k-trace of G is a pair (G◦, h) where G◦ is an abelian variety over k and
h : G◦ → G is a homomorphism over K with finite kernel; such that the following
universal property holds:

Given any abelian variety G′ over k and a homomorphism h′ : G′ → G over K,
there exists a unique homorphism g : G′ → G◦ over k such that h′ = hg.
Remark 3.4. As K/k is primary, a K/k-trace of G exists.1 Moreover, by the
universal property, if (G′

◦, h
′) is another K/k-trace of G then there is a (unique)

isomorphism g : G′
◦ → G◦ over k with h′ = hg.

Lemma 3.5. We follow the notation of Definition 3.3. That is K/k is an extension
of fields and G is an abelian variety over K. Suppose G is weakly isotrivial, and
let (G◦, h) be a Ksep/k-trace of G. Then h is purely inseparable and surjective. In
particular, there is a witness for the weak isotriviality of G over Ksep.

Proof. By weak isotriviality, there is L/Ksep a finitely generated field extension, H
an abelian variety over k, and f : H → G a purely inseparable surjective morphism
over L. Translating by −f(OH) ∈ G(L), we may assume that f is a homomorphism
of algebraic groups. Let (G′

◦, h
′) be any L/k-trace of G. By the universal property

we have a homomorphism g : H → G′
◦ over k such that the following commutes:

H

g

��

f // G

G′
◦

h′

>>~~~~~~~

As h′ has finite kernel and f is a purely inseparable surjection, we obtain

dim(G′
◦) = dim G = dim H = dim g(H).

Hence, g(H) = G′
◦. It follows that h′ is purely inseparable and surjective.

Now G is over Ksep, Ksep is a primary extension of k, and L is a primary
extension of Ksep. Hence by VIII.3.7 of [3], (G◦, h) is also an L/k-trace of G. By
the above observation h is purely seperable and surjective. �

Until further notice, we fix G a weakly isotrivial abelian variety, and K the
minimal field of definition for G. Note that K/Fp is finitely generated, and if G is
strongly isotrivial then K is a finite field.

We wish to construct, in as canonical a manner as possible, an endomorphism
of G that is “induced by the Frobenius automorphism of U”.
Definition 3.6. A psuedo-Frobenius endomorphism of G, F̃ : G → G, is a purely
inseparable surjective endomorphism over KFq of the form hFh−1, where

1See Lang [3].



12 RAHIM MOOSA AND THOMAS SCANLON

• (G◦, h) is a Ksep/k-trace of G;
• q is a power of p such that G◦ is over Fq; and,
• F : G◦ → G◦ is the algebraic endomorphism induced by the q-power Frobe-

nius map.
Lemma 3.7. A psuedo-Frobenius endomorphism of G exists.

Proof. Let (G◦, h) be any Ksep/k-trace of G. As G is weakly isotrivial, Lemma 3.5
tells us that h : G◦ → G is a purely inseperable surjective homomorphism over
Ksep. Now let q be a power of p such that:

1. G◦ is over Fq;
2. every algebraic automorphism of G◦ is over Fq; and,
3. h−1[G(Ksep)] ⊂ G◦((Ksep)

1
q ).

That such a power of p exists follows from the following facts: G◦ is over k = Falg
p ,

every algebraic automorphism of G◦ is over k and the group of algebraic automor-
phisms of G◦ (which is the multpilicative group of units in the endomorphism ring
of G◦) is finitely generated, and h is a purely inseperable isogeny over Ksep.

Let F : G◦ → G◦ be the algebraic endomorphism induced by the q-power Frobe-
nius map x 7→ xq, and let F̃ : G → G be the definable endomorphism F̃ := hFh−1.
Note that F̃ is a bijection (on the U-rational points). It remains to show that F̃ is
an algebraic morphism, and that it is over KFq.

As F̃ is a definable endomorphism, there exists n ≥ 0 and an algebraic homo-
morphism F̂ : G → Gpn

such that the following commutes:

G

F̂ ""EE
EE

EE
EE

F̃ // G

F n
G||yy

yy
yy

yy

G(pn)

where FG is the morphism on G induced by the Frobenius map. Choose n minimal
with this property. We will show that n = 0 and hence F̂ = F̃ is a morphism. First
of all, if x ∈ G(Ksep) then h−1(x) ∈ G◦((Ksep)

1
q ) (by our choice of q). Hence

F̃ (x) ∈ hF [G◦((Ksep)
1
q )] ⊂ h[G◦(Ksep)] ⊂ G(Ksep).

We have shown that F̃ [G(Ksep)] ⊂ G(Ksep). The above commuting diagram thus
restricts to the following commuting diagram:

G(Ksep)

F̂ ''OOOOOOOOOOO
F̃ // G(Ksep)

F n
Gwwooooooooooo

G(pn)((Ksep)pn

)

If n > 0 then F̂ = FGg for some algebraic homomorphism g : G → G(pn−1),
contradicting the minimal choice of n. Hence n = 0 and F̃ is an algebraic morphism.

If Γ(F ) ⊂ G◦×G◦ is the graph of F , then (h×h)[Γ(F )(Ksep)] ⊂ (G×G)(Ksep)
is Zariski dense in the graph of F̃ , and hence F̃ is over Ksep. It suffices, therefore,
to show that F̃ is model-theoretically definable over KFq. For this, it suffices to
show that every automorphism of the universe which fixes KFq pointwise fixes F̃ .
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Let α be an automorphism of the universe which fixes KFq pointwise. Then α
fixes G◦ and G setwise, and

F̃α = (hFh−1)α = αhFh−1α−1 = (αhα−1)F (αhα−1)−1 = hαF (hα)−1,

where the penultimate equality is by the fact that α commutes with F (on G◦). Now
(G◦, h

α) is another Ksep/k-trace of G. Hence, there is an algebraic automorphism
g of G◦ over k, such that hα = hg. Moreover, by our choice of q, g is over Fq.
Hence F̃α = hgFg−1h−1 = hFh−1 = F̃ , where the penultimate equality is by the
fact that F commutes with g. This proves the lemma. �

A psuedo-Frobenius endomorphism on a weakly isotrivial abelian variety is only
unique up to iterations:

Lemma 3.8. Suppose F̃ ′ : G → G is another psuedo-Frobenius endomorphism.
Then for some n, n′ > 0, F̃n = (F̃ ′)n′ .

Proof. Let (G′
◦, h

′), q′, F ′ be data that witnesses the psuedo-Frobenius nature of F̃ ′

(see Definition 3.6). Note that (G◦, h) and (G′
◦, h

′) are both Ksep/k traces of G,
and hence there is an isomorphism g : G′

◦ → G◦ over k, with h′ = hg. Let N > 0
be such that FpN contains Fq and Fq′ , and such that g is over FpN . Let n, n′ > 0 be
such that qn = pN = (q′)n′ . Then the pN -power Frobenius automorphism induces
Fn on G◦ and (F ′)n′ on G′

◦. Moreover, as g is over FpN and the pN -power Frobenius
automorphism fixes FpN -pointwise, we have that g(F ′)n′g−1 = Fn. Hence,

(F̃ ′)n′ = [h′F ′(h′)−1]n
′
= hg(F ′)n′g−1h−1 = hFnh−1 = F̃n,

as desired. �

Recall from Definition 1.2 that a Frobenius ring is the abstract counterpart of
the subring of the endomorphism ring of a strongly isotrivial semiabelian variety
generated by a Frobenius.

Lemma 3.9. If F̃ is a psuedo-Frobenius endomorphism of G, then the subring of
the endomorphism of G generated by F̃ , R = Z[F̃ ], is a Frobenius ring.

Proof. Let R◦ = Z[F ] be the subring of the endomorphism ring of G◦ generated by
F . As G◦ is over Fq and F is induced by the q-power Frobenius, R◦ is a Frobenius
ring. Hence it suffices to show that the map α : R◦ → R over Z induced by F 7→ F̃

is an isomorphism of R and R◦. But this map is just P (F ) 7→ hP (F )h−1 = P (F̃ ).
As h is bijective, α is an isomorphism of rings. �

Question 3.10. Suppose A is an abelian variety and P : A → A is a purely
inseperable surjective endomorphism such that the subring of the endomorphism
ring of A generated by P is a Frobenius ring. Does it follow that A is weakly
isotrivial and αP is a psuedo-Frobenius endomorphism for some α ∈ Aut(A)?

In any case, from the strongly isotrivial case we deduce a version of the Mordell-
Lang conjecture for weakly isotrivial groups.
Theorem 3.11 (Absolute Mordell-Lang – Weakly Isotrivial Case). Suppose G is
a weakly isotrivial abelian variety and F̃ : G → G is a psuedo-Frobenius endomor-
phism. Suppose Γ ≤ G(U) is a finitely generated Z[F̃ ]-submodule. Then for X ⊂ G

a closed subvariety, X(U) ∩ Γ is a finite union of F̃ -sets.
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Proof. Let (G◦, h), q, F be data that witnesses the psuedo-Frobenius nature of F̃ .
Let R◦ = Z[F ] be the subring of the endomorphism ring of G◦ generated by F . Let
Γ◦ = h−1(Γ) ≤ G◦(U) and X◦ = h−1(X) ⊂ G◦. As F̃ = hFh−1, Γ◦ is a finitely
generated R◦-submodule of G◦(U). Now h is a bijective group homomorphism
from G◦(U) to G(U) that takes the action of F to the action of F̃ , and restricts
to a bijection between X◦(U) ∩ Γ◦ and X(U) ∩ Γ. The theorem thus follows from
Theorem 1.5 applied to G◦,Γ◦, F, X◦. �

A general case of the Mordell-Lang conjecture follows.
Theorem 3.12. Let G be an abelian variety over U, X ⊆ G be a closed subvariety,
and Γ ≤ G(U) a finitely generated subgroup. Let G′ ≤ G be the maximal connected
weakly isotrivial algebraic subgroup of G and set Γ′ := Γ∩G′(U). We presume that
Γ′ is a Z[F̃ ]-submodule for some pseudo-Frobenius F̃ on G′. Then X(U) ∩ Γ is a
finite union of sets of the form a + S + (H(U) ∩ Γ) where a ∈ G(U), S ⊆ G′(U) is
a groupless F̃ -set in G′, and H ≤ G is an algebraic subgroup.

Proof. We work by induction on dim X. Taking finite unions, we may assume
that X is irreducible. Passing to a quotient, we may assume that X has a trivial
stabilizer. Replacing X with the Zariski closure of X(U) ∩ Γ, we may assume that
X(U)∩Γ is Zariski dense in X. By Hrushovski’s theorem (3.1) there is a connected
algebraic subgroup G1 ≤ G, an abelian variety G◦ defined over k, an algebraic
variety X◦ ⊆ G◦, and a surjective morphism of algebraic groups h : G1 → G◦
for which X is a translate of h−1X◦. As X has no stabilizer, this morphism is
necessarily a purely inseparable isogeny. Taking dual isogenies, it follows that G1

is weakly isotrivial and is therefore a subgroup of G′. Hence X ⊆ α + G′ for
some α ∈ G(U). As the Γ points are dense in X, there is some γ ∈ Γ for which
γ + X ⊆ G′; and so X(U) ∩ Γ = −γ + [(γ + X)(U) ∩ Γ] = −γ + [(γ + X)(U) ∩ Γ′].
We are now in the case of Theorem 3.11. �

Remark 3.13. Suppose K is a function field over which G, G′, and F̃ are defined.
Then Γ := G(K) satisfies the assumptions of Theorem 3.12.
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