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In showing that order one sets living on curves of genus at least two defined
over the constants have no structure, Hrushovski and Itai cite a result of Jouanolou
on hypersurface solutions to Pfaffian equations. In Remark 2.12 of [1] it is noted
that this result would follow from the following geometric statement (which is itself
implied by Proposition 2.1 of [1]).

Proposition 1. If C and C ′ are smooth, complete curves over an algebraically
closed field k, ω ∈ H0(C,Ω1

C/k) is an essential, global one form on C, and f, g :

C ′ → C are two nonconstant maps with f∗ω = g∗ω, then f = g.

In this note we give an alternate proof of Proposition 1.
We embed C ↪→ JC and C ′ ↪→ JC′ into their Jacobians by choosing base-

points. These embeddings induce isomorphisms H0(JC ,Ω
1
JC/k) ∼= H0(C,Ω1

C/k)

and H0(JC′ ,Ω1
JC′/k

) ∼= H0(C ′,Ω1
C′/k). Let ω̃ ∈ H0(JC ,Ω

1
JC/k) correspond to ω.

That is, ω̃|C = ω. Let f̃ , g̃ : JC′ → JC be the maps induced on the Jacobian

by f and g. The maps f̃ and g̃ are affine homomorphisms. That is, f̃ = τP ◦ φ
and g̃ = τQ ◦ ψ for some maps of algebraic groups φ, ψ : JC′ → JC and points
P,Q ∈ JC(k) where τR is the map x 7→ x+R.

We compute

0 = f∗ω − g∗ω
= f̃∗ω̃ − g̃∗ω̃
= (τPφ)∗ω̃ − (τQψ)∗ω̃

= φ∗τ∗P ω̃ − ψ∗τ∗Qω̃
= φ∗ω̃ − ψ∗ω̃
= (φ∗ − ψ∗)ω̃
= (φ−JC

ψ)∗ω̃

As ω̃ 6= 0, this computation shows that φ− ψ is not an isogeny.

Claim: If φ = ψ, then f = g.
Proof of Claim: If φ = ψ, then g = τQ−P ◦ f . This implies that τQ−P induces
an automorphism of C. As the genus of C ≥ 2, there can be no automorphisms
of infinite order, so Q − P is a torsion point. If P 6= Q, then ω is not essential as
(τQ−P |C)∗ω = ω so that ω descends to the quotient C/〈Q − P 〉. Thus, we have
Q = P so that f = g. z
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So working under the hypothesis that f 6= g, we find that A := (φ − ψ)(JC′) is
a proper abelian subvariety of JC . It follows from the facts that (ψ −JC

φ)∗ω̃ = 0
and (ψ −JC

φ) : JC′ → A is surjective that ω̃|A = 0.
Let B be a complement to A. That is, B < JC is an abelian subvariety with

B + A = JC and A ∩ B finite. The maps A × B → JC → (JC/A) × (JC/B)
induce a direct sum decomposition H0(JC ,Ω

1
JC/k) = H0(A,Ω1

A/k)⊕H0(B,Ω1
B/k) ∼=

H0(JC/B,Ω
1
(JC/B)/k)⊕H0(JC/A,Ω

1
(JC/A)/k). If C̄ := π(C) where π : JC → JC/A

is the projection map and η ∈ H0(JC/A,Ω
1
(JC/A)/k) corresponds to ω̃|B under the

above isomorphism, then ω = (π|C)∗(η|C̄). The map π|C has degree greater than
one (a degree one map would induce an automorphism of JC). These facts imply
that ω is not essential.
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