Transcendence

Valuations on curves

Open problems

Definability in fields Lecture 3: Finding structure through transcendence

Thomas Scanlon

University of California, Berkeley

6 February 2007 Model Theory and Computable Model Theory Gainesville, Florida

Thomas Scanlon

University of California, Berkeley

Image: A matrix and a matrix

Function fields ●○○○○○○○	Transcendence	Valuations on curves	Open problems
Finitely generat	ed fields		

- Finite fields
- Number fields
- Fields of rational functions k(t) over finitely generated fields
- Finite extensions of finitely generated fields
- Function fields

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems
• 00 00000			
Finitely gener	ated fields		

- Finite fields
- Number fields
- Fields of rational functions k(t) over finitely generated fields
- Finite extensions of finitely generated fields
- Function fields

Function fields ●○○○○○○○	Transcendence	Valuations on curves	Open problems
Finitely generat	ed fields		

- Finite fields
- Number fields
- Fields of rational functions k(t) over finitely generated fields
- Finite extensions of finitely generated fields
- Function fields

Function fields ●○○○○○○○	Transcendence	Valuations on curves	Open problems
Finitely generat	ed fields		

Included within the class of finitely generated fields we have

- Finite fields
- Number fields
- Fields of rational functions k(t) over finitely generated fields
- Finite extensions of finitely generated fields
- Function fields

Function fields	Transcendence	Valuations on curves	Open problems
••••	000000	000000	00
Finitely gene	visited fields		
I IIIILEIY gene			

- Finite fields
- Number fields
- Fields of rational functions k(t) over finitely generated fields
- Finite extensions of finitely generated fields
- Function fields

Function fields	Transcendence	Valuations on curves	Open problems
••••	000000	000000	00
Finitely gene	visited fields		
I IIIILEIY gene			

- Finite fields
- Number fields
- Fields of rational functions k(t) over finitely generated fields
- Finite extensions of finitely generated fields
- Function fields

Function fields	Transcendence	Valuations on curves	Open problems
••••	000000	000000	00
Finitely gene	visited fields		
I IIIILEIY gene			

- Finite fields
- Number fields
- Fields of rational functions k(t) over finitely generated fields
- Finite extensions of finitely generated fields
- Function fields

Function fields ○●○○○○○○	Transcendence	Valuations on curves	Open problems
Algebraic varieti	es over $\mathbb C$		

If V is a projective algebraic variety over \mathbb{C} , then the set of meromorphics functions on \mathbb{C} is naturally a finitely generated field over \mathbb{C} and every field finitely generated over \mathbb{C} has this form.

Thomas Scanlon

Proposition

University of California, Berkeley

Function	fields
000000	

Transcendence

Valuations on curves

Open problems

Algebraic varieties over $\mathbb C$

Proposition

If V is a projective algebraic variety over \mathbb{C} , then the set of meromorphics functions on \mathbb{C} is naturally a finitely generated field over \mathbb{C} and every field finitely generated over \mathbb{C} has this form.

More algebraically, if $V \subseteq \mathbb{C}^n$ is an irreducible affine complex algebraic variety, then $I(V) := \{f \in \mathbb{C}[X_1, \ldots, X_n] \mid (\forall \mathbf{a} \in V) f(\mathbf{a}) = 0\}$ is a prime ideal and the field of rational functions on V, $\mathbb{C}(V)$, may be expressed as the field of fractions of $\mathbb{C}[X_1, \ldots, X_n]/I(V)$.

Thomas Scanlon

Image: A math a math

Function fields ○○●○○○○○	Transcendence	Valuations on curves	Open problems
Finitely generate	ed fields as funct	ion fields	

- Choose generators $a_1, \ldots, a_n \in K$.
- The ideal $p := l(\mathbf{a}/k) := \{ f \in k[X_1, ..., X_n] \mid f(\mathbf{a}) = 0 \}$ is prime.
- If V is the algebraic variety defined by \mathfrak{p} , then $K \cong k(V)$.

Thomas Scanlon

University of California, Berkeley

Function fields ○○●○○○○○	Transcendence	Valuations on curves	Open problems
Finitely generate	ed fields as funct	ion fields	

- Choose generators $a_1, \ldots, a_n \in K$.
- The ideal $p := l(a/k) := \{ f \in k[X_1, ..., X_n] \mid f(a) = 0 \}$ is prime.
- If V is the algebraic variety defined by \mathfrak{p} , then $K \cong k(V)$.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems
Finitely generate	ed fields as funct	ion fields	

- Choose generators $a_1, \ldots, a_n \in K$.
- The ideal $\mathfrak{p} := I(\mathbf{a}/k) := \{ f \in k[X_1, ..., X_n] \mid f(\mathbf{a}) = 0 \}$ is prime.

• If V is the algebraic variety defined by p, then $K \cong k(V)$.

Function fields	Transcendence	Valuations on curves	Open problems
Finitely generate	ed fields as funct	ion fields	

- Choose generators $a_1, \ldots, a_n \in K$.
- The ideal $\mathfrak{p} := I(\mathbf{a}/k) := \{ f \in k[X_1, ..., X_n] \mid f(\mathbf{a}) = 0 \}$ is prime.
- If V is the algebraic variety defined by \mathfrak{p} , then $K \cong k(V)$.

 Function fields
 Transcendence
 Valuations on curves
 Open problems

 00000
 00000
 00000
 00

How much does k(V) know about V?

- The association from an algebraic variety V over the field k to the finitely generated (over k) field k(V) is well-defined.
- Our construction of an inverse requires the choice of generators.
- In general, non-isomorphic varieties may yield the same field.
- In fact, there need not even be a "best choice" of a variety.

Thomas Scanlon

University of California, Berkeley

 Function fields
 Transcendence
 Valuations on curves
 Open problems

 00000
 00000
 00000
 00

How much does k(V) know about V?

- The association from an algebraic variety V over the field k to the finitely generated (over k) field k(V) is well-defined.
- Our construction of an inverse requires the choice of generators.
- In general, non-isomorphic varieties may yield the same field.
- In fact, there need not even be a "best choice" of a variety.

Thomas Scanlon

University of California, Berkeley

المراجع المراجع			
000000			
Function fields	Transcendence	Valuations on curves	Open problems

How much does k(V) know about V?

- The association from an algebraic variety V over the field k to the finitely generated (over k) field k(V) is well-defined.
- Our construction of an inverse requires the choice of generators.
- In general, non-isomorphic varieties may yield the same field.
- In fact, there need not even be a "best choice" of a variety.

 Function fields
 Transcendence
 Valuations on curves
 Open problems

 000000
 00000
 00000
 00

How much does k(V) know about V?

- The association from an algebraic variety V over the field k to the finitely generated (over k) field k(V) is well-defined.
- Our construction of an inverse requires the choice of generators.
- In general, non-isomorphic varieties may yield the same field.
- In fact, there need not even be a "best choice" of a variety.

Function fields	Transcendence	Valuations on curves	Open problems
Function fields of	of smooth curves		

For function fields of curves, the arithmetic of the field determines the geometry of the curve.

Function fields		Transcendence	e	Valuations or	curves	Open problems
-	(1) I I	~				

Function fields of smooth curves

For function fields of curves, the arithmetic of the field determines the geometry of the curve.

Theorem

The association $C \mapsto k(C)$ is an equivalence of categories between the category of smooth, projective, absolutely irreducible, curves over the field k and the category of finitely generated (over k) fields of transcendence degree one over k.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems
00000000			
Changing the	rround field		

Changing the ground field

Question

We intend to study finitely generated fields, in general, which may have transcendence degree greater than one. How can we regard them as function fields of curves?

Thomas Scanlon

University of California, Berkeley

<u> </u>			
00000000			
Function fields	Transcendence	Valuations on curves	Open problems

Changing the ground field

Question

We intend to study finitely generated fields, in general, which may have transcendence degree greater than one. How can we regard them as function fields of curves?

Answer

Change the ground field.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems
00000000			
A construction			

If K is a finitely generated field of characteristic zero of transcendence degree n > 1, then we can express K as $\mathbb{Q}(V)$ for some algebraic variety.

Function fields ○○○○○○●○	Transcendence	Valuations on curves	Open problems 00
A construction			

If K is a finitely generated field of characteristic zero of transcendence degree n > 1, then we can express K as $\mathbb{Q}(V)$ for some algebraic variety.

If $a_1, \ldots, a_{n-1} \in K$ are algebraically independent, then $k := \mathbb{Q}(a_1, \ldots, a_{n-1})^{\text{alg}} \cap K$ is a relatively algebraically closed subfield of K with tr. deg_k(K) = 1.

Function fields	Transcendence	Valuations on curves	Open problems
00000000			
۸			
A construct	ion		

If K is a finitely generated field of characteristic zero of transcendence degree n > 1, then we can express K as $\mathbb{Q}(V)$ for some algebraic variety.

If $a_1, \ldots, a_{n-1} \in K$ are algebraically independent, then $k := \mathbb{Q}(a_1, \ldots, a_{n-1})^{\operatorname{alg}} \cap K$ is a relatively algebraically closed subfield of K with tr. deg_k(K) = 1.

Thus, there is a unique smooth, projective, absolutely irreducible curve over k for which K = k(C).

Function fields	Transcendence	Valuations on curves	Open problems
0000000			
Observation	s about the con	struction	
Observation	is about the con	STRUCTION	

• Whilst C is determined from K and k, k depends on a choice.

• *k* does not appear to have an obvious first-order definition.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems
0000000	000000	000000	
Obconvotions ?	bout the con	struction	

- Whilst C is determined from K and k, k depends on a choice.
- *k* does not appear to have an obvious first-order definition.

Function fields	Transcendence ●○○○○○	Valuations on curves	Open problems
Natural $\mathscr{L}_{\omega_1,\omega}$	definition	of algebraic dependence	

The elements a_1, \ldots, a_n in a field K are algebraically dependent if and only if

$$K \models \bigvee_{F \in \mathbb{Z}[X_1, \dots, X_n]} (\exists x_1, \dots, x_n) (F(\mathbf{a}) = 0 \& F(\mathbf{x}) \neq 0)$$

Thomas Scanlon

University of California, Berkeley

Transcendence ○●○○○○ Valuations on curves

Open problems

Poonen's definition of algebraic dependence

Theorem (Poonen, after Pop)

For each positive integer n there is a formula $\delta_n(x_1, \ldots, x_n)$ in the language of rings having n free variables for which for any finitely generated field K and n-tuple $\mathbf{a} \in K^n$ one has $K \models \delta_n(\mathbf{a})$ if and only if the tuple is algebraically dependent.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence ○○●○○○	Valuations on curves	Open problems
Basics of quadra	atic forms		

For K a field and $\mathbf{b} = (b_1, \dots, b_d) \in (K^{\times})^d$, the Pfister form

 $q_{\mathbf{b}} = \sum_{I \in {}^{d}2} \mathbf{b}^{I} x_{I}^{2}$

Thomas Scanlon

associated to **b** is

University of California, Berkeley

Function fields	Transcendence ○○●○○○	Valuations on curves	Open problems
Basics of guadra	atic forms		

For K a field and $\mathbf{b} = (b_1, \dots, b_d) \in (K^{\times})^d$, the Pfister form associated to \mathbf{b} is

$$q_{\mathbf{b}} = \sum_{I \in {}^d 2} \mathbf{b}^I x_I^2$$

A quadratic form q represents zero if there is a nontrivial solution to the equation $q(\mathbf{a}) = 0$.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence ○○●○○○	Valuations on curves	Open problems
Basics of guadra	atic forms		

For K a field and $\mathbf{b} = (b_1, \dots, b_d) \in (K^{\times})^d$, the Pfister form associated to \mathbf{b} is

$$q_{\mathbf{b}} = \sum_{I \in {}^{d}2} \mathbf{b}^{I} x_{I}^{2}$$

A quadratic form q represents zero if there is a nontrivial solution to the equation $q(\mathbf{a}) = 0$. It is universal if for every $r \in K^{\times}$ there is a solution to the equation $q(\mathbf{a}) = r$.

Thomas Scanlon

Definability in fields Lecture 3: Finding structure through transcendence

University of California, Berkeley

Transcendence

Valuations on curves

Open problems

Pop's definition of transcendence degree

Theorem (Pop)

If K is a finitely generated field of characteristic zero, then tr. deg(K) = d if and only if for every d + 2-tuple $(b_1, \ldots, b_{d+2}) \in (K[\sqrt{-1}]^{\times})^{d+2}$ the form $q_{\mathbf{b}}$ is universal while for some choice the form does not represent zero.

Thomas Scanlon

University of California, Berkeley

Transcendence

Valuations on curves

Open problems

Pop's definition of transcendence degree

Theorem (Pop)

If K is a finitely generated field of characteristic zero, then tr. deg(K) = d if and only if for every d + 2-tuple $(b_1, \ldots, b_{d+2}) \in (K[\sqrt{-1}]^{\times})^{d+2}$ the form $q_{\mathbf{b}}$ is universal while for some choice the form does not represent zero.

The proof uses Voevodsky's theorem on the Milnor conjecture relating Galois cohomology groups, Milnor K-groups, and Witt groups.

Transcendence

Valuations on curves

Open problems

Pop's near definition of δ

Theorem (Pop)

If K is a finitely generated field of characteristic zero and transcendence degree d, then if c and d are algebraic numbers for which $q_{(t_1,...,t_d,c,d)}$ does not represent zero over $K[\sqrt{-1}]$, then $(t_1,...,t_d)$ are algebraically independent. Almost conversely, if $(t_1,...,t_d)$ is a transcendence basis, then for many choices of $(a_1,...,a_d,c,d) \in \mathbb{Z}^{d+2}$, the form $q_{(t_1-a_1,...,t_d-a_d,c,d)}$ does not represent zero.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems

Theorem (Pop)

uennuu

If K is a finitely generated field of characteristic zero and transcendence degree d, then if c and d are algebraic numbers for which $q_{(t_1,...,t_d,c,d)}$ does not represent zero over $K[\sqrt{-1}]$, then $(t_1,...,t_d)$ are algebraically independent. Almost conversely, if $(t_1,...,t_d)$ is a transcendence basis, then for many choices of $(a_1,...,a_d,c,d) \in \mathbb{Z}^{d+2}$, the form $q_{(t_1-a_1,...,t_d-a_d,c,d)}$ does not represent zero.

Poonen's refinement is proven by showing that the relevant algebraic and integer points may be recognized as the coördinates of points on certain elliptic curves.

unction fields	Transcendence	Valuations on curves	Open problems
0000000	000000		

- The algebraic closure of the prime field is definable as k := δ₁(K).
- If a₁,..., a_d ∈ K are algebraically independent, then the relative algebraic closure of the field generated by a₁,..., a_d is (parametrically) definable as δ_{d+1}(K; a).
- Consequently, every infinite finitely generated field has an undecidable theory.
- If K is a finitely generated field of positive transcendence degree, then there is a (parametrically) definable relatively algebraically closed subfield k ⊆ K for which tr. deg_k(K) = 1.

Function fields	Transcendence	Valuations on curves	Open problems
	000000		

- The algebraic closure of the prime field is definable as *k* := δ₁(*K*).
- If a₁,..., a_d ∈ K are algebraically independent, then the relative algebraic closure of the field generated by a₁,..., a_d is (parametrically) definable as δ_{d+1}(K; a).
- Consequently, every infinite finitely generated field has an undecidable theory.
- If K is a finitely generated field of positive transcendence degree, then there is a (parametrically) definable relatively algebraically closed subfield k ⊆ K for which tr. deg_k(K) = 1.

Function fields	Transcendence	Valuations on curves	Open problems
	000000		

- The algebraic closure of the prime field is definable as *k* := δ₁(*K*).
- If a₁,..., a_d ∈ K are algebraically independent, then the relative algebraic closure of the field generated by a₁,..., a_d is (parametrically) definable as δ_{d+1}(K; a).
- Consequently, every infinite finitely generated field has an undecidable theory.
- If K is a finitely generated field of positive transcendence degree, then there is a (parametrically) definable relatively algebraically closed subfield k ⊆ K for which tr. deg_k(K) = 1.

Function fields	Transcendence	Valuations on curves	Open problems
	000000		

- The algebraic closure of the prime field is definable as *k* := δ₁(*K*).
- If a₁,..., a_d ∈ K are algebraically independent, then the relative algebraic closure of the field generated by a₁,..., a_d is (parametrically) definable as δ_{d+1}(K; a).
- Consequently, every infinite finitely generated field has an undecidable theory.
- If K is a finitely generated field of positive transcendence degree, then there is a (parametrically) definable relatively algebraically closed subfield k ⊆ K for which tr. deg_k(K) = 1.

Function fields	Transcendence	Valuations on curves	Open problems
		00000	
	c		
Know thysel	T		

If K is a finitely generated field of transcendence degree at least one, then we can express K as K = k(C) where k is a (parametrically) definable relatively algebraically closed subfield and C is a smooth projective curve over k.

Function fields	Transcendence	Valuations on curves ●○○○○○	Open problems 00
Know thyself			

If K is a finitely generated field of transcendence degree at least one, then we can express K as K = k(C) where k is a (parametrically) definable relatively algebraically closed subfield and C is a smooth projective curve over k. Working by induction on the transcendence degree and using Rumely's theorem in the base case, we may assume that k is (parametrically) biinterpretable with Z. In particular, every arithmetic (relative to the standard recursive presentation of k) set in k is definable.

Function fields	Transcendence	Valuations on curves ●○○○○○	Open problems
Know thyself			

If K is a finitely generated field of transcendence degree at least one, then we can express K as K = k(C) where k is a (parametrically) definable relatively algebraically closed subfield and C is a smooth projective curve over k.

Working by induction on the transcendence degree and using Rumely's theorem in the base case, we may assume that k is (parametrically) biinterpretable with \mathbb{Z} . In particular, every arithmetic (relative to the standard recursive presentation of k) set in k is definable.

To conclude that K is biinterpretable with \mathbb{Z} it would suffice for it to recognize itself as a field of functions.

Function fields	Transcendence	Valuations on curves ○●○○○○	Open problems 00
Valuations on c	urves		

On the field k(t), for any $a \in k$ there is a valuation ord_a : $k(t) \to \mathbb{Z} \cup \{\infty\}$ given by the order of vanishing at a.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems
Valuations on ci	Irves		

On the field k(t), for any $a \in k$ there is a valuation ord_a : $k(t) \to \mathbb{Z} \cup \{\infty\}$ given by the order of vanishing at a. This valuation is related to evaluation at the point a by the relation $f(a) = b \iff \operatorname{ord}_a(f - b) > 0$.

Thomas Scanlon

Func	tion	field	

Valuations on curves

On the field k(t), for any $a \in k$ there is a valuation ord_a: $k(t) \to \mathbb{Z} \cup \{\infty\}$ given by the order of vanishing at a. This valuation is related to evaluation at the point a by the relation $f(a) = b \iff \operatorname{ord}_a(f - b) > 0$. More generally, for any smooth projective curve C over k and closed point $P \in C$ there is a valuation ord_P on k(C) given by order of vanishing at P and f(P) = b just in case $\operatorname{ord}_P(f - b) > 0$.

Thomas Scanlon

Transcendence

Valuations on curves

Open problems

Which local-global principle?

To define the valuations on function fields of curves we use a local-global principle for Brauer groups (proven by Auslander and Brumer), though if one ignores characteristic two the Witt index theorem would suffice.

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems
Central simple a	løehras		

Let ℓ be a prime, K a field of characteristic different from ℓ , $\omega \in K^{\times}$ an ℓ^{th} root of unity, and A and B two nonzero elements of K. Then $D(A, B, \omega; K)$ is the noncommutative K-algebra generated by α and β subject to the relations $\alpha^{\ell} = A$, $\beta^{\ell} = B$, and $\beta \alpha = \omega \alpha \beta$.

Thomas Scanlon

Function fields	Transcendence	Valuations on curves	Open problems
Central simple a	algebras		

Let ℓ be a prime, K a field of characteristic different from ℓ , $\omega \in K^{\times}$ an ℓ^{th} root of unity, and A and B two nonzero elements of K. Then $D(A, B, \omega; K)$ is the noncommutative K-algebra generated by α and β subject to the relations $\alpha^{\ell} = A$, $\beta^{\ell} = B$, and $\beta \alpha = \omega \alpha \beta$.

Theorem

 $D(A, B, \omega; K)$ is a division ring if and only if A is not an ℓ^{th} power in K and B is not a norm from $K(\sqrt[\ell]{A})$.

Thomas Scanlon

Definability in fields Lecture 3: Finding structure through transcendence

University of California, Berkeley

Transcendence

Valuations on curves

Open problems

Auslander-Brumer local-global principle

Theorem

Let ℓ be a prime, k be a field, $\omega \in k$ an ℓ^{th} root of unity, $A, B \in k(t)^{\times}$ two nonzero rational functions over k. Then $D(A, B, \omega; k(t))$ is a division ring if and only if there is some completion K of k(t) with respect to a valuation trivial on k for which $D(A, B, \omega; K)$ is a division ring.

Thomas Scanlon

University of California, Berkeley

(日) (同) (三) (

Function fields	Transcendence	Valuations on curves ○○○○○●	Open problems
Defining valuati	ions		

- Using the local-global principle, we cook up a couple of rings depending on the parameter $f \in k(t)$ which will be division rings just in case $\operatorname{ord}_a(f) \equiv 0 \pmod{\ell}$.
- To be honest, the formulas in question only work when k is replaced by some kind of complete field and a density argument is required to encode everything in k(t).
- One extends to k(C) for more general curves analogously to J. Robinson's method of studying number rings.

Function fields	Transcendence	Valuations on curves ○○○○○●	Open problems
Defining valuati	ons		

- Using the local-global principle, we cook up a couple of rings depending on the parameter f ∈ k(t) which will be division rings just in case ord_a(f) ≡ 0 (mod ℓ).
- To be honest, the formulas in question only work when k is replaced by some kind of complete field and a density argument is required to encode everything in k(t).
- One extends to k(C) for more general curves analogously to J. Robinson's method of studying number rings.

Function fields	Transcendence	Valuations on curves ○○○○○●	Open problems
Defining valuati	ons		

- Using the local-global principle, we cook up a couple of rings depending on the parameter f ∈ k(t) which will be division rings just in case ord_a(f) ≡ 0 (mod ℓ).
- To be honest, the formulas in question only work when k is replaced by some kind of complete field and a density argument is required to encode everything in k(t).
- One extends to k(C) for more general curves analogously to J. Robinson's method of studying number rings.

Function	fields
000000	00

• Is $\mathsf{Th}(\mathbb{C}(t))$ decidable?

- Is $\mathbb{C}[t]_{(t)}$ parametrically definable in $\mathbb{C}(t)$?
- If K and L are finitely generated over the same algebraically closed field k and $K \equiv L$, must we have $K \cong L$?

Thomas Scanlon

University of California, Berkeley

Function	fields
000000	00

• Is Th($\mathbb{C}(t)$) decidable? stable?

- Is $\mathbb{C}[t]_{(t)}$ parametrically definable in $\mathbb{C}(t)$?
- If K and L are finitely generated over the same algebraically closed field k and K ≡ L, must we have K ≅ L?

Thomas Scanlon

University of California, Berkeley

Function	fields
	00

- Is Th($\mathbb{C}(t)$) decidable? stable?
- Is $\mathbb{C}[t]_{(t)}$ parametrically definable in $\mathbb{C}(t)$?
- If K and L are finitely generated over the same algebraically closed field k and $K \equiv L$, must we have $K \cong L$?

Thomas Scanlon

University of California, Berkeley

Function	fields

- Is Th($\mathbb{C}(t)$) decidable? stable?
- Is $\mathbb{C}[t]_{(t)}$ parametrically definable in $\mathbb{C}(t)$?
- If K and L are finitely generated over the same algebraically closed field k and K ≡ L, must we have K ≅ L?

Thomas Scanlon

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems ⊙●
Arithmetic n	rohlems		

- Is there a straightforward way to deduce the existence of Gödel coding in finitely generated fields from the Pop/Poonen transcendence definition?
- Is there an alternate way to demonstrate undecidability of the theory of $\mathbb Q$ without directly interpreting $\mathbb Z?$
- Is there a uniform biinterpretation of infinite finitely generated fields with \mathbb{Z} ?
- $\mathbb{Q}^{alg}(t,s)$ and \mathbb{Z} interpret each other.

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems ○●		
Arithmetic problems					

- Is there a straightforward way to deduce the existence of Gödel coding in finitely generated fields from the Pop/Poonen transcendence definition?
- Is there an alternate way to demonstrate undecidability of the theory of $\mathbb Q$ without directly interpreting $\mathbb Z$?
- Is there a uniform biinterpretation of infinite finitely generated fields with Z?
- $\mathbb{Q}^{alg}(t,s)$ and \mathbb{Z} interpret each other.

University of California, Berkeley

Function fields	Transcendence	Valuations on curves	Open problems ○●		
Arithmetic problems					

- Is there a straightforward way to deduce the existence of Gödel coding in finitely generated fields from the Pop/Poonen transcendence definition?
- Is there an alternate way to demonstrate undecidability of the theory of $\mathbb Q$ without directly interpreting $\mathbb Z$?
- Is there a uniform biinterpretation of infinite finitely generated fields with $\mathbb{Z}?$
- $\mathbb{Q}^{alg}(t,s)$ and \mathbb{Z} interpret each other.

Function fields	Transcendence	Valuations on curves	Open problems ○●		
Arithmetic problems					

- Is there a straightforward way to deduce the existence of Gödel coding in finitely generated fields from the Pop/Poonen transcendence definition?
- Is there an alternate way to demonstrate undecidability of the theory of $\mathbb Q$ without directly interpreting $\mathbb Z$?
- Is there a uniform biinterpretation of infinite finitely generated fields with \mathbb{Z} ?
- $\mathbb{Q}^{alg}(t,s)$ and \mathbb{Z} interpret each other.

Function fields	Transcendence	Valuations on curves	Open problems ○●			
Arithmetic problems						

- Is there a straightforward way to deduce the existence of Gödel coding in finitely generated fields from the Pop/Poonen transcendence definition?
- Is there an alternate way to demonstrate undecidability of the theory of $\mathbb Q$ without directly interpreting $\mathbb Z?$
- Is there a uniform biinterpretation of infinite finitely generated fields with $\mathbb{Z}?$
- $\mathbb{Q}^{alg}(t,s)$ and \mathbb{Z} interpret each other. Are they biinterpretable?