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Finitely generated fields

A finitely generated field is simply a field K in which there is some
finite set A = {a1, . . . , an} ⊆ K for which every element of K may
be written as P(a1, . . . , an)/Q(a1, . . . , an) for some polynomials P
and Q with integer coëfficients.

Finite fields

Number fields

Fields of rational functions k(t) over finitely generated fields

Finite extensions of finitely generated fields

Function fields
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Algebraic varieties over C

Proposition

If V is a projective algebraic variety over C, then the set of
meromorphics functions on C is naturally a finitely generated field
over C and every field finitely generated over C has this form.
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Algebraic varieties over C

Proposition

If V is a projective algebraic variety over C, then the set of
meromorphics functions on C is naturally a finitely generated field
over C and every field finitely generated over C has this form.

More algebraically, if V ⊆ Cn is an irreducible affine complex
algebraic variety, then
I (V ) := {f ∈ C[X1, . . . ,Xn] | (∀a ∈ V )f (a) = 0} is a prime ideal
and the field of rational functions on V , C(V ), may be expressed
as the field of fractions of C[X1, . . . ,Xn]/I (V ).
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Finitely generated fields as function fields

In general, if K is finitely generated over the field k, then K may
be expressed as a function field over k.

Choose generators a1, . . . , an ∈ K .

The ideal p := I (a/k) := {f ∈ k[X1, . . . ,Xn] | f (a) = 0} is
prime.

If V is the algebraic variety defined by p, then K ∼= k(V ).
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How much does k(V ) know about V ?

The association from an algebraic variety V over the field k to
the finitely generated (over k) field k(V ) is well-defined.

Our construction of an inverse requires the choice of
generators.

In general, non-isomorphic varieties may yield the same field.

In fact, there need not even be a “best choice” of a variety.
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Function fields of smooth curves

For function fields of curves, the arithmetic of the field determines
the geometry of the curve.
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Function fields of smooth curves

For function fields of curves, the arithmetic of the field determines
the geometry of the curve.

Theorem

The association C 7→ k(C ) is an equivalence of categories between
the category of smooth, projective, absolutely irreducible, curves
over the field k and the category of finitely generated (over k)
fields of transcendence degree one over k.
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Changing the ground field

Question

We intend to study finitely generated fields, in general, which may
have transcendence degree greater than one. How can we regard
them as function fields of curves?
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Changing the ground field

Question

We intend to study finitely generated fields, in general, which may
have transcendence degree greater than one. How can we regard
them as function fields of curves?

Answer

Change the ground field.
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A construction

If K is a finitely generated field of characteristic zero of
transcendence degree n > 1, then we can express K as Q(V ) for
some algebraic variety.
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A construction

If K is a finitely generated field of characteristic zero of
transcendence degree n > 1, then we can express K as Q(V ) for
some algebraic variety.
If a1, . . . , an−1 ∈ K are algebraically independent, then
k := Q(a1, . . . , an−1)

alg ∩ K is a relatively algebraically closed
subfield of K with tr. degk(K ) = 1.
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A construction

If K is a finitely generated field of characteristic zero of
transcendence degree n > 1, then we can express K as Q(V ) for
some algebraic variety.
If a1, . . . , an−1 ∈ K are algebraically independent, then
k := Q(a1, . . . , an−1)

alg ∩ K is a relatively algebraically closed
subfield of K with tr. degk(K ) = 1.
Thus, there is a unique smooth, projective, absolutely irreducible
curve over k for which K = k(C ).
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Observations about the construction

Whilst C is determined from K and k, k depends on a choice.

k does not appear to have an obvious first-order definition.
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Natural Lω1,ω definition of algebraic dependence

The elements a1, . . . , an in a field K are algebraically dependent if
and only if

K |=
∨

F∈Z[X1,...,Xn]

(∃x1, . . . , xn)(F (a) = 0 & F (x) 6= 0)
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Poonen’s definition of algebraic dependence

Theorem (Poonen, after Pop)

For each positive integer n there is a formula δn(x1, . . . , xn) in the
language of rings having n free variables for which for any finitely
generated field K and n-tuple a ∈ Kn one has K |= δn(a) if and
only if the tuple is algebraically dependent.
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Basics of quadratic forms

For K a field and b = (b1, . . . , bd) ∈ (K×)d , the Pfister form
associated to b is

qb =
∑
I∈d2

bI x2
I
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Basics of quadratic forms

For K a field and b = (b1, . . . , bd) ∈ (K×)d , the Pfister form
associated to b is

qb =
∑
I∈d2

bI x2
I

A quadratic form q represents zero if there is a nontrivial solution
to the equation q(a) = 0. It is universal if for every r ∈ K× there
is a solution to the equation q(a) = r .
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Pop’s definition of transcendence degree

Theorem (Pop)

If K is a finitely generated field of characteristic zero, then
tr. deg(K ) = d if and only if for every d + 2-tuple
(b1, . . . , bd+2) ∈ (K [

√
−1]×)d+2 the form qb is universal while for

some choice the form does not represent zero.
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Pop’s definition of transcendence degree

Theorem (Pop)

If K is a finitely generated field of characteristic zero, then
tr. deg(K ) = d if and only if for every d + 2-tuple
(b1, . . . , bd+2) ∈ (K [

√
−1]×)d+2 the form qb is universal while for

some choice the form does not represent zero.

The proof uses Voevodsky’s theorem on the Milnor conjecture
relating Galois cohomology groups, Milnor K -groups, and Witt
groups.
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Pop’s near definition of δ

Theorem (Pop)

If K is a finitely generated field of characteristic zero and
transcendence degree d, then if c and d are algebraic numbers for
which q(t1,...,td ,c,d) does not represent zero over K [

√
−1], then

(t1, . . . , td) are algebraically independent. Almost conversely, if
(t1, . . . , td) is a transcendence basis, then for many choices of
(a1, . . . , ad , c , d) ∈ Zd+2, the form q(t1−a1,...,td−ad ,c,d) does not
represent zero.
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Pop’s near definition of δ

Theorem (Pop)

If K is a finitely generated field of characteristic zero and
transcendence degree d, then if c and d are algebraic numbers for
which q(t1,...,td ,c,d) does not represent zero over K [

√
−1], then

(t1, . . . , td) are algebraically independent. Almost conversely, if
(t1, . . . , td) is a transcendence basis, then for many choices of
(a1, . . . , ad , c , d) ∈ Zd+2, the form q(t1−a1,...,td−ad ,c,d) does not
represent zero.

Poonen’s refinement is proven by showing that the relevant
algebraic and integer points may be recognized as the coördinates
of points on certain elliptic curves.
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The algebraic closure of the prime field is definable as
k := δ1(K ).

If a1, . . . , ad ∈ K are algebraically independent, then the
relative algebraic closure of the field generated by a1, . . . , ad is
(parametrically) definable as δd+1(K ; a).

Consequently, every infinite finitely generated field has an
undecidable theory.

If K is a finitely generated field of positive transcendence
degree, then there is a (parametrically) definable relatively
algebraically closed subfield k ⊆ K for which tr. degk(K ) = 1.
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Know thyself

If K is a finitely generated field of transcendence degree at least
one, then we can express K as K = k(C ) where k is a
(parametrically) definable relatively algebraically closed subfield
and C is a smooth projective curve over k.
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Know thyself

If K is a finitely generated field of transcendence degree at least
one, then we can express K as K = k(C ) where k is a
(parametrically) definable relatively algebraically closed subfield
and C is a smooth projective curve over k.
Working by induction on the transcendence degree and using
Rumely’s theorem in the base case, we may assume that k is
(parametrically) bïınterpretable with Z. In particular, every
arithmetic (relative to the standard recursive presentation of k) set
in k is definable.
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Know thyself

If K is a finitely generated field of transcendence degree at least
one, then we can express K as K = k(C ) where k is a
(parametrically) definable relatively algebraically closed subfield
and C is a smooth projective curve over k.
Working by induction on the transcendence degree and using
Rumely’s theorem in the base case, we may assume that k is
(parametrically) bïınterpretable with Z. In particular, every
arithmetic (relative to the standard recursive presentation of k) set
in k is definable.
To conclude that K is bïınterpretable with Z it would suffice for it
to recognize itself as a field of functions.
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Valuations on curves

On the field k(t), for any a ∈ k there is a valuation
orda : k(t) → Z ∪ {∞} given by the order of vanishing at a.
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Valuations on curves

On the field k(t), for any a ∈ k there is a valuation
orda : k(t) → Z ∪ {∞} given by the order of vanishing at a.
This valuation is related to evaluation at the point a by the
relation f (a) = b ⇐⇒ orda(f − b) > 0.
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Valuations on curves

On the field k(t), for any a ∈ k there is a valuation
orda : k(t) → Z ∪ {∞} given by the order of vanishing at a.
This valuation is related to evaluation at the point a by the
relation f (a) = b ⇐⇒ orda(f − b) > 0.
More generally, for any smooth projective curve C over k and
closed point P ∈ C there is a valuation ordP on k(C ) given by
order of vanishing at P and f (P) = b just in case ordP(f − b) > 0.
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Which local-global principle?

To define the valuations on function fields of curves we use a
local-global principle for Brauer groups (proven by Auslander and
Brumer), though if one ignores characteristic two the Witt index
theorem would suffice.
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Central simple algebras

Let ` be a prime, K a field of characteristic different from `,
ω ∈ K× an `th root of unity, and A and B two nonzero elements of
K . Then D(A,B, ω;K ) is the noncommutative K -algebra
generated by α and β subject to the relations α` = A, β` = B, and
βα = ωαβ.
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Central simple algebras

Let ` be a prime, K a field of characteristic different from `,
ω ∈ K× an `th root of unity, and A and B two nonzero elements of
K . Then D(A,B, ω;K ) is the noncommutative K -algebra
generated by α and β subject to the relations α` = A, β` = B, and
βα = ωαβ.

Theorem

D(A,B, ω;K ) is a division ring if and only if A is not an `th power
in K and B is not a norm from K (

√̀
A).
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Auslander-Brumer local-global principle

Theorem

Let ` be a prime, k be a field, ω ∈ k an `th root of unity,
A,B ∈ k(t)× two nonzero rational functions over k. Then
D(A,B, ω; k(t)) is a division ring if and only if there is some
completion K of k(t) with respect to a valuation trivial on k for
which D(A,B, ω;K ) is a division ring.
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Defining valuations

Using the local-global principle, we cook up a couple of rings
depending on the parameter f ∈ k(t) which will be division
rings just in case orda(f ) ≡ 0 (mod `).

To be honest, the formulas in question only work when k is
replaced by some kind of complete field and a density
argument is required to encode everything in k(t).

One extends to k(C ) for more general curves analogously to
J. Robinson’s method of studying number rings.
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Geometric problems

Is Th(C(t)) decidable?

Is C[t](t) parametrically definable in C(t)?

If K and L are finitely generated over the same algebraically
closed field k and K ≡ L, must we have K ∼= L?
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If K and L are finitely generated over the same algebraically
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