Introduction	Pop's problem	Decidability	Definability	Preview
000	00000	00000000	0000	

Definability in fields Lecture 1: Undecidabile arithmetic, decidable geometry

Thomas Scanlon

University of California, Berkeley

5 February 2007 Model Theory and Computable Model Theory Gainesville, Florida

Thomas Scanlon

University of California, Berkeley

Introduction ●○○	Pop's problem	Decidability 000000000	Definability 0000	Preview
Structures fro	om logic			

What do we study when we examine mathematical structures from the perspective of logic?

- What formal sentences are true in M?
- What sets are definable in \mathfrak{M} ?

Thomas Scanlon

University of California, Berkeley

Introduction ●○○	Pop's problem	Decidability 000000000	Definability	Preview
Structures fr	om logic			

What do we study when we examine mathematical structures from the perspective of logic?

Given an \mathscr{L} -structure \mathfrak{M} we might ask:

- What formal sentences are true in M?
- What sets are definable in \mathfrak{M} ?

Thomas Scanlon

University of California, Berkeley

Introduction ●○○	Pop's problem	Decidability	Definability	Preview
Structures	s from logic			

S.

Question

What do we study when we examine mathematical structures from the perspective of logic?

Given an \mathscr{L} -structure \mathfrak{M} we might ask:

- What formal sentences are true in \mathfrak{M} ?
- What sets are definable in M?

Thomas Scanlon

University of California, Berkeley

Introduction ●○○	Pop's problem	Decidability	Definability	Preview
Structures	from logic			

What do we study when we examine mathematical structures from the perspective of logic?

Given an $\mathscr{L}\text{-structure }\mathfrak{M}$ we might ask:

ъ

- What formal sentences are true in \mathfrak{M} ? That is, what is $\operatorname{Th}_{\mathscr{L}}(\mathfrak{M}) := \{ \varphi \mid \mathfrak{M} \models \varphi \}.$
- What sets are definable in M?

Thomas Scanlon

University of California, Berkeley

Introduction ●○○	Pop's problem	Decidability	Definability	Preview
Structures	s from logic			

What do we study when we examine mathematical structures from the perspective of logic?

Given an \mathscr{L} -structure \mathfrak{M} we might ask:

- What formal sentences are true in M? That is, what is Th_L(M) := {φ | M ⊨ φ}. Perhaps more importantly, how do we decide which sentences are true in M?
- What sets are definable in \mathfrak{M} ?

Introduction ●○○	Pop's problem	Decidability	Definability	Preview
Structures	from logic			

What do we study when we examine mathematical structures from the perspective of logic?

Given an \mathscr{L} -structure \mathfrak{M} we might ask:

- What formal sentences are true in M? That is, what is Th_L(M) := {φ | M ⊨ φ}. Perhaps more importantly, how do we decide which sentences are true in M?
- What sets are definable in \mathfrak{M} ?

Introduction ●○○	Pop's problem	Decidability 000000000	Definability 0000	Preview
Structures fro	om logic			

What do we study when we examine mathematical structures from the perspective of logic?

Given an \mathscr{L} -structure \mathfrak{M} we might ask:

- What formal sentences are true in M? That is, what is Th_L(M) := {φ | M ⊨ φ}. Perhaps more importantly, how do we decide which sentences are true in M?
- What sets are definable in \mathfrak{M} ? That is, describe the set $\operatorname{Def}(\mathfrak{M}) := \bigcup_{n=0}^{\infty} \operatorname{Def}_n(\mathfrak{M})$ where $\operatorname{Def}_n(\mathfrak{M}) := \{\varphi(\mathfrak{M}) \mid \varphi(x_1, \dots, x_n) \in \mathscr{L}\}$ and $\varphi(\mathfrak{M}) := \{\mathbf{a} \in M^n \mid \mathfrak{M} \models \varphi(\mathbf{a})\}.$

Introduction ○●○	Pop's problem	Decidability	Definability	Preview
\ \ / .'	at a star of the			

Which question should we ask?

• Traditionally, logicians focus on decidability of theories.

- From the standpoint of logic, we can only discern a difference between structures if they satisfy different sentences. That is, elementary equivalence, $\mathfrak{M} \equiv \mathfrak{N} \Leftrightarrow \operatorname{Th}_{\mathscr{L}}(\mathfrak{M}) = \operatorname{Th}_{\mathscr{L}}(\mathfrak{N})$, is the right logical notion of two structures being the same.
- The complexity of the theory of a structure is expressed by the complexity of Def(\mathfrak{M}).

Thomas Scanlon

University of California, Berkeley

- Traditionally, logicians focus on decidability of theories.
- From the standpoint of logic, we can only discern a difference between structures if they satisfy different sentences. That is, elementary equivalence, 𝔐 ≡ 𝔅 ⇔ Th_𝔅(𝔅) = Th_𝔅(𝔅), is the right logical notion of two structures being the same.
- The complexity of the theory of a structure is expressed by the complexity of Def(M).

Thomas Scanlon

- Traditionally, logicians focus on decidability of theories.
- From the standpoint of logic, we can only discern a difference between structures if they satisfy different sentences. That is, elementary equivalence, 𝔐 ≡ 𝔅 ⇔ Th_𝔅(𝔅) = Th_𝔅(𝔅), is the right logical notion of two structures being the same.
- The complexity of the theory of a structure is expressed by the complexity of Def(\mathfrak{M}).

- Traditionally, logicians focus on decidability of theories.
- From the standpoint of logic, we can only discern a difference between structures if they satisfy different sentences. That is, elementary equivalence, $\mathfrak{M} \equiv \mathfrak{N} \Leftrightarrow \mathsf{Th}_{\mathscr{L}}(\mathfrak{M}) = \mathsf{Th}_{\mathscr{L}}(\mathfrak{N})$, is the right logical notion of two structures being the same.
- The complexity of the theory of a structure is expressed by the complexity of Def(\mathfrak{M}).

Of course, to answer either of the questions we need to answer the other.

Introduction ○○●	Pop's problem	Decidability 000000000	Definability	Preview
Specializing t	to rings			

- Does R ≡ S imply R ≅ S (for R and S from some fixed class of rings)? (Pop's Problem)
- Is Th(R) decidable?
- Is $Th_{\exists}(R)$ decidable? (Hilbert's Tenth Problem for R)
- What is definable in $(R, +, \times)$?

Thomas Scanlon

University of California, Berkeley

- Does R ≡ S imply R ≅ S (for R and S from some fixed class of rings)? (Pop's Problem)
- Is Th(R) decidable?

• Is $Th_{\exists}(R)$ decidable? (Hilbert's Tenth Problem for R)

• What is definable in $(R, +, \times)$?

Thomas Scanlon

University of California, Berkeley

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction ○○●	Pop's problem	Decidability	Definability	Preview
Specializing t	to rings			

- Does R ≡ S imply R ≅ S (for R and S from some fixed class of rings)? (Pop's Problem)
- Is Th(R) decidable?
- Is $Th_{\exists}(R)$ decidable? (Hilbert's Tenth Problem for R)
- What is definable in $(R, +, \times)$?

Thomas Scanlon

University of California, Berkeley

Introduction ○○●	Pop's problem	Decidability	Definability	Preview
Specializing t	to rings			

- Does R ≡ S imply R ≅ S (for R and S from some fixed class of rings)? (Pop's Problem)
- Is Th(R) decidable?
- Is $Th_{\exists}(R)$ decidable? (Hilbert's Tenth Problem for R)
- What is definable in $(R, +, \times)$?

Thomas Scanlon

University of California, Berkeley

Introduction ○○●	Pop's problem	Decidability	Definability	Preview
Specializing t	to rings			

- Does R ≡ S imply R ≅ S (for R and S from some fixed class of rings)? (Pop's Problem)
- Is Th(R) decidable?
- Is $Th_{\exists}(R)$ decidable? (Hilbert's Tenth Problem for R)
- What is definable in $(R, +, \times)$?

Thomas Scanlon

Introduction	Pop's problem ●○○○○	Decidability	Definability 0000	Preview
Pop's prol	olem			

Conjecture

If K and L are two finitely generated fields, then $K \equiv L \Leftrightarrow K \cong L$.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem ●○○○○	Decidability	Definability	Preview
Pop's proble	em			

Conjecture

If K and L are two finitely generated fields, then $K \equiv L \Leftrightarrow K \cong L$.

In its geometric form, Pop's conjecture asserts that if K and L are finitely generated over \mathbb{C} , then $L \equiv K \iff L \cong K$.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem ○●○○○	Decidability	Definability 0000	Preview
An easy "sol	ution"			

If the field ${\cal K}$ had access to its own presentation, then it could describe itself.

Thomas Scanlon

University of California, Berkeley

Image: A math a math

Introduction	Pop's problem ○●○○○	Decidability	Definability	Preview
An easy "so	lution"			

If the field K had access to its own presentation, then it could describe itself.

A finitely generated field may be expressed as the field of quotients of a ring of the form $\mathbb{Z}[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$ where each f_i is a polynomial in *n* variables with integer coëfficients and (f_1, \ldots, f_m) is a prime ideal.

Introduction	Pop's problem ○●○○○	Decidability	Definability 0000	Preview
An easy "so	lution"			

If the field K had access to its own presentation, then it could describe itself.

A finitely generated field may be expressed as the field of quotients of a ring of the form $\mathbb{Z}[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$ where each f_i is a polynomial in *n* variables with integer coëfficients and (f_1, \ldots, f_m) is a prime ideal.

K satisfies the first-order sentence $\exists \mathbf{a} \wedge f_i(\mathbf{a}) = 0$.

If the field K had access to its own presentation, then it could describe itself.

A finitely generated field may be expressed as the field of quotients of a ring of the form $\mathbb{Z}[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$ where each f_i is a polynomial in *n* variables with integer coëfficients and (f_1, \ldots, f_m) is a prime ideal.

K satisfies the first-order sentence $\exists \mathbf{a} \wedge f_i(\mathbf{a}) = 0$.

K is determined up to isomorphism by the $\mathscr{L}_{\omega_{1},\omega}$ sentence expressing that there is a generic solution **a** to $\bigwedge f_{i}(\mathbf{a})$ and every element of K is expressible as a rational function of **a**.

Introduction	Pop's problem ○○●○○	Decidability	Definability	Preview
A very eas	sy case of Pop'	s conjecture		

Distinguish between \mathbb{Q} and $\mathbb{Q}(\sqrt{2})$.

Thomas Scanlon

∃ → University of California, Berkeley

3

・ロト ・ 日 ・ ・ ヨ ト ・

 Introduction
 Pop's problem
 Decidability
 Definability
 Preview

 A very easy case of Pop's conjecture
 Pop's problem
 Preview
 Preview
 Preview

Problem

Distinguish between \mathbb{Q} and $\mathbb{Q}(\sqrt{2})$.

$$\mathbb{Q}(\sqrt{2}) \models (\exists x)x \cdot x = 1+1$$

 $\mathbb{Q} \models (\forall x)x \cdot x \neq 1+1$

Thomas Scanlon

Definability in fields Lecture 1: Undecidabile arithmetic, decidable geometry

University of California, Berkeley

・ロト ・日下 ・日下

Introduction	Pop's problem ○○○●○	Decidability	Definability 0000	Preview
Another c	ase of Pop's co	niecture		

Distinguish between \mathbb{Q} and $\mathbb{Q}(t)$.

Thomas Scanlon

University of California, Berkeley

・ロト ・ 日下 ・ 日下 ・

Introduction	Pop's problem ○○○●○	Decidability 000000000	Definability 0000	Preview
Another case	of Pop's conje	cture		

Distinguish between \mathbb{Q} and $\mathbb{Q}(t)$.

$$\mathbb{Q} \models (\forall x)(\exists y_1)(\exists y_2)(\exists y_3)(\exists y_4)x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \\ \lor -x = y_1^2 + y_2^2 + y_3^2 + y_4^2$$

Thomas Scanlon

Definability in fields Lecture 1: Undecidabile arithmetic, decidable geometry

University of California, Berkeley

・ロト ・日子・ ・ ヨト

Introduction	Pop's problem ○○○●○	Decidability	Definability	Preview
Another case	of Pop's conje	ecture		

Distinguish between \mathbb{Q} and $\mathbb{Q}(t)$.

$$\mathbb{Q} \models (\forall x)(\exists y_1)(\exists y_2)(\exists y_3)(\exists y_4)x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \\ \lor -x = y_1^2 + y_2^2 + y_3^2 + y_4^2$$

Neither t nor -t is a sum of squares in $\mathbb{Q}(t)$.

Thomas Scanlon

Definability in fields Lecture 1: Undecidabile arithmetic, decidable geometry

University of California, Berkeley

Introduction	Pop's problem ○○○○●	Decidability	Definability	Preview
Sabhagh's	auestion			

Question (Sabbagh)

Is there a sentence τ in the language of rings for which if K is a finitely generated field of transcendence degree one, then $K \models \tau$ and if L is a finitely generated field of transcendence degree two, then $K \models \neg \tau$?

Thomas Scanlon

University of California, Berkeley

Introduction

Pop's problem

Decidability

Definability

Preview

Hilbert's Tenth Problem

Problem

10. Entscheidung der Lösbarkeit einer diophantischen Gleichung. Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchen sich mittels einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

Thomas Scanlon

University of California, Berkeley

Hilbert's Tenth Problem

Problem

10. Entscheidung der Lösbarkeit einer diophantischen Gleichung. Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlkoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchen sich mittels einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

That is, find a finitistic procedure which when given a polynomial $f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ in finitely many indeterminates over the integers determines (correctly) where or not there is a tuple $\mathbf{a} \in \mathbb{Z}^n$ with $f(\mathbf{a}) = 0$.

 Introduction
 Pop's problem
 Decidability
 Definability
 Preview

 Matiyasevich's theorem (first form)

Theorem (Matiyasevich (using Davis-Putnam-(J.) Robinson))

There is no solution to Hilbert's Tenth Problem.

Thomas Scanlon

University of California, Berkeley

Image: A match a ma

Introduction	Pop's problem	Decidability	Definability 0000	Preview
Gödel's Incon	npleteness The	eorems		

Theorem (First Incompleteness Theorem)

 $\mathsf{Th}(\mathbb{Z},+,\times)$ is undecidable.

Thomas Scanlon

University of California, Berkeley

(日)、

Theorem (First Incompleteness Theorem)

 $\mathsf{Th}(\mathbb{Z},+,\times)$ is undecidable.

Gödel actually shows that there is no decision procedure for Π_1^0 -sentences. The work in the prood of the MDPR theorem involves showing that the bounded quantifiers may be encoded with Diophantine predicates.

Introduction	Pop's problem	Decidability ○○○●○○○○○	Definability	Preview
Undecidabilit	ty of $\mathbb Q$			

$\mathsf{Th}(\mathbb{Q},+,\times)$ is undecidable.

- There is a formula ζ(x) in one free variable for which
 Q ⊨ ζ(a) if and only if a ∈ Z. [We will discuss the construction of ζ in Lecture 2.]
- If we had a decision procedure for Q, then we would have one for Z by relativizing the sentences for Z to Q using ζ.

Thomas Scanlon

University of California, Berkeley

Introduction 000	Pop's problem	Decidability ○○○●○○○○○	Definability 0000	Preview
Undecidability	y of ℚ			

 $\mathsf{Th}(\mathbb{Q},+,\times)$ is undecidable.

Proof.

- There is a formula ζ(x) in one free variable for which
 Q ⊨ ζ(a) if and only if a ∈ Z. [We will discuss the construction of ζ in Lecture 2.]
- If we had a decision procedure for Q, then we would have one for Z by relativizing the sentences for Z to Q using ζ.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem	Decidability	Definability	Preview
Undecidal	\mathbf{bility} of \mathbf{O}			

 $\mathsf{Th}(\mathbb{Q}, +, \times)$ is undecidable.

Proof.

- There is a formula ζ(x) in one free variable for which
 Q ⊨ ζ(a) if and only if a ∈ Z. [We will discuss the construction of ζ in Lecture 2.]
- If we had a decision procedure for Q, then we would have one for Z by relativizing the sentences for Z to Q using ζ.

Thomas Scanlon

University of California, Berkeley

▲ @ ▶ ▲ ≥ ▶ ▲

Introduction 000	Pop's problem	Decidability ○○○● ○ ○○○○	Definability 0000	Preview
Undecidabilit	y of ℚ			

 $\mathsf{Th}(\mathbb{Q}, +, \times)$ is undecidable.

Proof.

- There is a formula ζ(x) in one free variable for which
 Q ⊨ ζ(a) if and only if a ∈ Z. [We will discuss the construction of ζ in Lecture 2.]
- If we had a decision procedure for Q, then we would have one for Z by relativizing the sentences for Z to Q using ζ.

Thomas Scanlon

University of California, Berkeley

Introduction 000	Pop's problem	Decidability ○○○●○○○○○	Definability	Preview
Undecidability	y of ${\mathbb Q}$			

 $\mathsf{Th}(\mathbb{Q},+,\times)$ is undecidable.

Proof.

- There is a formula ζ(x) in one free variable for which
 Q ⊨ ζ(a) if and only if a ∈ Z. [We will discuss the construction of ζ in Lecture 2.]
- If we had a decision procedure for Q, then we would have one for Z by relativizing the sentences for Z to Q using ζ.

Hilbert's Tenth Problem for \mathbb{Q} is still open. Robinson's ζ uses three alternations of quantifiers and to date no existential definition of \mathbb{Z} has been found.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem	Decidability ○○○○●○○○○	Definability 0000	Preview
Undecidability	y of $\mathbb{F}_{ ho}(t)$			

 $\mathsf{Th}(\mathbb{F}_p(t), +, \times)$ is undecidable.

Thomas Scanlon

University of California, Berkeley

・ロト ・ 日下 ・ 日下 ・

Introduction

Pop's problem

Preview

Undecidability of $\mathbb{F}_{p}(t)$

Theorem (R. Robinson)

 $\mathsf{Th}(\mathbb{F}_{p}(t),+, imes)$ is undecidable.

In this case, using t as a parameter, the set of powers of t is definable and Robinson shows that the set $\{(t^m, t^n, t^{mn}) : m, n \in \mathbb{Z}\}$ is also definable. Relativizing, a decision procedure for $\mathbb{F}_p(t)$ would give one for \mathbb{Z} .

Thomas Scanlon

Introduction	Pop's problem	Decidability ○○○○●○○○○	Definability	Preview
Undecidability of $\mathbb{F}_{+}(t)$				

 $\mathsf{Th}(\mathbb{F}_{p}(t),+, imes)$ is undecidable.

In this case, using t as a parameter, the set of powers of t is definable and Robinson shows that the set $\{(t^m, t^n, t^{mn}) : m, n \in \mathbb{Z}\}$ is also definable. Relativizing, a decision procedure for $\mathbb{F}_p(t)$ would give one for \mathbb{Z} . Th. Pheidas has shown that the interpretation of \mathbb{Z} may be taken to be Diophantine. Thus, Hilbert's Tenth Problem for $\mathbb{F}_p(t)$ has no solution.

Introduction	Pop's problem	Decidability ○○○○●○○○	Definability 0000	Preview
Elementar	y geometry			

Elementary geometry is decidable. That is, $\mathsf{Th}(\mathbb{R})$ is decidable.

Thomas Scanlon

University of California, Berkeley

(日) (同) (三) (

Introduction	Pop's problem	Decidability ○○○○●○○○	Definability 0000	Preview
Elementary g	eometry			

Elementary geometry is decidable. That is, $\mathsf{Th}(\mathbb{R})$ is decidable.

As \mathbb{C} is interpretable in \mathbb{R} , it follows that $\mathsf{Th}(\mathbb{C})$ is also decidable.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem	Decidability ○○○○●○○○	Definability	Preview
Elementary g	eometry			

Elementary geometry is decidable. That is, $\mathsf{Th}(\mathbb{R})$ is decidable.

As \mathbb{C} is interpretable in \mathbb{R} , it follows that $\mathsf{Th}(\mathbb{C})$ is also decidable. Of course, one can deduce this as well from the theorem that the recursively axiomatized theory of algebraically closed fields of a fixed characteristic is complete.

Introduction	Pop's problem	Decidability ○○○○○●○○	Definability 0000	Preview
<i>p</i> -adic fields				

Theorem (Ax and Kochen; Eršov)

The theory of the p-adic numbers is decidable.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem	Decidability ○○○○○○●○	Definability	Preview
Valuations:	Definition			

Definition

A valuation v on a field K is a function $v : K \to \Gamma \cup \{\infty\}$ where $(\Gamma, +, 0, <)$ is an ordered abelian group for which for all x and y in K

Image: A math a math

University of California, Berkeley

•
$$v(x) = \infty \iff x = 0$$

•
$$v(xy) = v(x) + v(y)$$
 and

•
$$v(x+y) \geq \min\{v(x), v(y)\}$$

Thomas Scanlon

Introduction	Pop's problem	Decidability ○○○○○○○●	Definability	Preview
Valuations:	Fyamples			

- *K* any field, $v \upharpoonright K^{\times} \equiv 0$, the trivial valuation
- K = Q, p a prime number, any x ∈ Q[×] may be expressed as x = p^r ^a/_b where a, b, and r are integers with a and b not divisible by p. The p-adic valuation of x is v_p(x) := r.
- K = k(t) where k is any field and for any rational function f expressed as f = g/h with g and h polynomials we set v_∞(f) = deg(h) deg(g).

Thomas Scanlon

University of California, Berkeley

▲ @ ▶ ▲ ∃ ▶ ▲

Introduction	Pop's problem	Decidability ○○○○○○○●	Definability	Preview
Valuations.	Fxamples			

- *K* any field, $v \upharpoonright K^{\times} \equiv 0$, the trivial valuation
- K = Q, p a prime number, any x ∈ Q[×] may be expressed as x = p^r ^a/_b where a, b, and r are integers with a and b not divisible by p. The p-adic valuation of x is v_p(x) := r.
- K = k(t) where k is any field and for any rational function f expressed as f = g/h with g and h polynomials we set v_∞(f) = deg(h) deg(g).

Thomas Scanlon

University of California, Berkeley

・ロト ・回ト ・ヨト ・

Introduction	Pop's problem	Decidability ○○○○○○○●	Definability	Preview
Valuations:	Examples			

- *K* any field, $v \upharpoonright K^{\times} \equiv 0$, the trivial valuation
- K = Q, p a prime number, any x ∈ Q[×] may be expressed as x = p^r ^a/_b where a, b, and r are integers with a and b not divisible by p. The p-adic valuation of x is v_p(x) := r.
- K = k(t) where k is any field and for any rational function f expressed as f = g/h with g and h polynomials we set v_∞(f) = deg(h) deg(g).

Thomas Scanlon

・ロト ・回ト ・ヨト ・

Introduction	Pop's problem	Decidability ○○○○○○○●	Definability	Preview
Valuations:	Examples			

- *K* any field, $v \upharpoonright K^{\times} \equiv 0$, the trivial valuation
- K = Q, p a prime number, any x ∈ Q[×] may be expressed as x = p^r ^a/_b where a, b, and r are integers with a and b not divisible by p. The p-adic valuation of x is v_p(x) := r.
- K = k(t) where k is any field and for any rational function f expressed as f = g/h with g and h polynomials we set v_∞(f) = deg(h) deg(g).

Introduction	Pop's problem	Decidability ○○○○○○●	Definability	Preview
Valuations:	Examples			

- K any field, $v \upharpoonright K^{\times} \equiv 0$, the trivial valuation
- K = Q, p a prime number, any x ∈ Q[×] may be expressed as x = p^r ^a/_b where a, b, and r are integers with a and b not divisible by p. The p-adic valuation of x is v_p(x) := r.
- K = k(t) where k is any field and for any rational function f expressed as f = g/h with g and h polynomials we set v_∞(f) = deg(h) deg(g).
- If (K, v) is a valued field, then the completion (K̂, v̂) is also a valued field. The completion of Q with respect to the p-adic valuation is Q_p, the field of p-adic numbers.

Thomas Scanlon

・ロト ・回ト ・ヨト ・

Introduction	Pop's problem	Decidability	Definability ●○○○	Preview
Gödel's In	completeness	revisited		

The negative content of Gödel's theorem is very strong, say in the form of the Second Incompleteness theorem that if T is a consistent, recursively enumerable extension of Peano Arithmetic, then $T \nvDash Con(T)$, but for us the positive content is just as striking.

The negative content of Gödel's theorem is very strong, say in the form of the Second Incompleteness theorem that if T is a consistent, recursively enumerable extension of Peano Arithmetic, then $T \nvDash Con(T)$, but for us the positive content is just as striking.

Theorem (Gödel)

 \mathbb{Z} codes sequences in the sense that there is a formula $\sigma(x, y, z)$ in the language of rings for which

 for any sequence σ ∈ ^{<ω}Z there is some s ∈ Z such that for any i ∈ Z₊ we have Z ⊨ σ(s, i, z) if and only if z = σ(i),

•
$$\mathbb{Z} \models (\forall s)(\forall i \ge 0)(\exists !z)\sigma(s, i, z)$$

Introduction	Pop's problem	Decidability	Definability ●○○○	Preview
Gödel's I	ncompleteness	revisited		

The negative content of Gödel's theorem is very strong, say in the form of the Second Incompleteness theorem that if T is a consistent, recursively enumerable extension of Peano Arithmetic, then $T \nvDash Con(T)$, but for us the positive content is just as striking.

Theorem (Gödel)

 \mathbb{Z} codes sequences in the sense that there is a formula $\sigma(x, y, z)$ in the language of rings for which

- for any sequence σ ∈ ^{<ω}Z there is some s ∈ Z such that for any i ∈ Z₊ we have Z ⊨ σ(s, i, z) if and only if z = σ(i),
- $\mathbb{Z} \models (\forall s)(\forall i \geq 0)(\exists !z)\sigma(s, i, z)$

It follows from the theorem on coding of sequences that every recursive, and more generally, every arithmetic set, is definable in \mathbb{Z} . Every conceivable set is definable in $(\mathbb{Z}, +, \times)$.

Introduction	Pop's problem	Decidability 000000000	Definability ○●○○	Preview
Definable set	s in ${\mathbb Q}$			

From J. Robinson's theorem on the definability of $\mathbb Z$ in $\mathbb Q$ and the usual construction of $\mathbb Q$ as the field of fractions of $\mathbb Z$, one sees that $\mathbb Q$ and $\mathbb Z$ are biinterpretable.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem	Decidability	Definability ○●○○	Preview
Definable set	s in \mathbb{Q}			

From J. Robinson's theorem on the definability of \mathbb{Z} in \mathbb{Q} and the usual construction of \mathbb{Q} as the field of fractions of \mathbb{Z} , one sees that \mathbb{Q} and \mathbb{Z} are biinterpretable. Thus, every arithmetic subset of \mathbb{Q}^n is definable in $(\mathbb{Q}, +, \times)$.

From J. Robinson's theorem on the definability of \mathbb{Z} in \mathbb{Q} and the usual construction of \mathbb{Q} as the field of fractions of \mathbb{Z} , one sees that \mathbb{Q} and \mathbb{Z} are biinterpretable. Thus, every arithmetic subset of \mathbb{Q}^n is definable in $(\mathbb{Q}, +, \times)$.

With more work, it is possible to deduce the same result (at least as long as one is willing to use parameters in the definitions) for $\mathbb{F}_p(t)$ from R. Robinson's theorem.

Introduction	Pop's problem	Decidability	Definability ○○●○	Preview
Definable set	s in ${\mathbb R}$			

Tarski's proof of the decidability of the theory of the real numbers yields a quantifier elimination theorem.

Introduction	Pop's problem	Decidability 00000000	Definability ००●०	Preview
Definable set	s in ${\mathbb R}$			

Tarski's proof of the decidability of the theory of the real numbers yields a quantifier elimination theorem.

Theorem (Tarski)

The real numbers admit quantifier elimination in the language of ordered rings.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem	Decidability 000000000	Definability ○○●○	Preview
Definable set	s in ${\mathbb R}$			

Tarski's proof of the decidability of the theory of the real numbers yields a quantifier elimination theorem.

Theorem (Tarski)

The real numbers admit quantifier elimination in the language of ordered rings.

Corollary

Every $\mathscr{L}(+, \times, 0, 1)_{\mathbb{R}}$ -definable subset of \mathbb{R} is a finite union of points and intervals.

Thomas Scanlon

Definability in fields Lecture 1: Undecidabile arithmetic, decidable geometry

University of California, Berkeley

Introduction	Pop's problem	Decidability	Definability ○○○●	Preview
Definable sets				

Algebraically closed fields eliminate quantifiers in the language of rings. Hence, every definable subset of an algebraically closed field is finite or cofinte.

Thomas Scanlon

University of California, Berkeley

Introduction 000	Pop's problem	Decidability 000000000	Definability ○○○●	Preview
Definable sets				

Algebraically closed fields eliminate quantifiers in the language of rings. Hence, every definable subset of an algebraically closed field is finite or cofinte.

Theorem

The field \mathbb{Q}_p eliminates quantifiers in the language of valued fields augmented by divisibility predicates on the value group. Hence, every infinite definable subset of \mathbb{Q}_p contains an open subset.

Thomas Scanlon

University of California, Berkeley

Introduction	Pop's problem	Decidability	Definability	Preview
Preview				

- Z = {x ∈ Q : (∀v a valuation)v(x) ≥ 0}. We shall find uniform definitions for the valuations on Q by using local-global principles to relate the valuations. The decidability of each Q_p is essential to this project.
- Voevodsky's theorems on quadratic forms will be used to express algebraic independence.
- We will use Gödel coding in Z together with other local-global principles to recognize finitely generated fields as function fields.

Introduction	Pop's problem	Decidability 000000000	Definability	Preview
Preview				

- Z = {x ∈ Q : (∀v a valuation)v(x) ≥ 0}. We shall find uniform definitions for the valuations on Q by using local-global principles to relate the valuations. The decidability of each Q_p is essential to this project.
- Voevodsky's theorems on quadratic forms will be used to express algebraic independence.
- We will use Gödel coding in Z together with other local-global principles to recognize finitely generated fields as function fields.

Introduction	Pop's problem	Decidability	Definability 0000	Preview
Preview				

- Z = {x ∈ Q : (∀v a valuation)v(x) ≥ 0}. We shall find uniform definitions for the valuations on Q by using local-global principles to relate the valuations. The decidability of each Q_p is essential to this project.
- Voevodsky's theorems on quadratic forms will be used to express algebraic independence.
- We will use Gödel coding in Z together with other local-global principles to recognize finitely generated fields as function fields.