Grothendieck Rings, Euler Characteristics Schanuel Dimensions of Models

Thomas Scanlon

29 September 2000

$\chi = F - E + V$

Interpretation of χ

- Euler-Poincaré characteristic: $\chi(X) = \sum (-1)^i \dim H^i(X)$
- (hyper-)graph theoretic/combinatorial version
- additive invariant of definable sets

O-minimal structures

Definition 1 A linearly ordered structure $\mathcal{M} = (M, <, \cdots)$ in language extending the language of ordered sets is o-minimal *i* (parametrically) definable subset of \mathcal{M} is a finite Boolean compoints and intervals of the form (a, b) with $a, b \in \mathcal{M} \cup \{-\infty, \infty\}$

Examples:

- $(\mathbb{Q}, <)$
- $(D, < .+, \{\lambda \cdot\}_{\lambda \in D})$ where *D* is an ordered division ring.
- $(\mathbb{R}, <, +, \cdot, 0, 1)$
- $(\mathbb{R}, <, +, \cdot, \exp, 0, 1)$

Abstract Euler characteristics

5

Definition 2 An Euler characteristic on a first-order structure \mathcal{A} function χ from the set of (parametrically) definable subsets of \mathcal{M} to some ring satisfying

- $\chi(X) = \chi(Y)$ if there is a definable bijection between X a
- $\chi(X \dot{\cup} Y) = \chi(X) + \chi(Y),$
- $\chi(X \times Y) = \chi(X) \cdot \chi(Y)$, and

•
$$\chi(\{*\}) = 1$$
 for any $* \in \mathcal{M}$.

Euler characteristics on o-minimal struct

Theorem 3 (van den Dries) If $\mathcal{M} = (M, <, +, \cdot, 0, 1, ...)$ is o-minimal expansion of an ordered field, then there is a unique characteristic χ on \mathcal{M} with values in \mathbb{Z} . Moreover, if the under is \mathbb{R} , then χ agrees with the topological Euler characteristics o manifolds.

The o-minimal Euler characteristic is a finer invariant than the tensor characteristic. For example, $\chi_0((0, 1)) = -1 \neq 0 = \chi_0([\chi_{top}((0, 1))]) = -1 = \chi_{top}([0, 1)).$

The rig of definable sets

Definition 4 Given an \mathcal{L} -structure \mathcal{M} and a natural number n_{i} is the set of all \mathcal{L}_{M} -definable subsets of of \mathcal{M}^{n} . The set $\text{Def}(\mathcal{M})$ $\bigcup_{n=0}^{\infty} \text{Def}^{n}(\mathcal{M})$.

 $Def(\mathcal{M})$ forms a category with the morphisms between two det being the set of definable functions between them.

Definition 5 $\widetilde{\text{Def}}(\mathcal{M})$ is the set of isomorphism classes of define subsets of powers of \mathcal{M} . We write $[]: \text{Def}(\mathcal{M}) \to \widetilde{\text{Def}}(\mathcal{M})$ fo which associates to a definable set its isomorphism type. $\widetilde{\text{Def}}(\mathcal{M})$ a natural $\mathcal{L}_{\text{ring}}$ -structure with $[X] + [Y] := [X \cup Y], [X] \cdot [Y] :=$ $0 := [\varnothing], and 1 := [\{*\}].$

Rigs

Def(\mathcal{M}) is a *rig* or *semiring*, but is never a ring as, for instance $\widetilde{\text{Def}}(\mathcal{M}) \models 0 \neq 1 \& (\forall x, y) x + y = 0 \rightarrow x = y = 0.$

Definition 6 A rig (or a semiring) is an \mathcal{L}_{ring} -structure for which

- \bullet + is a commutative, associative operation with null elements
- \cdot is an associative operation with null element 1,
- left- and right-multiplication by 0 are the zero function, an
- *· is left- and right-distributive over addition.*

The rig is commutative if multiplication is also a commutative

Axioms for $Def(\mathcal{M})$

The rig $Def(\mathcal{M})$ satisfies

• $0 \neq 1$

- $(\forall x, y) x \cdot y = y \cdot x$ (commutativity)
- $(\forall x, y) x + y = 0 \rightarrow x = 0 = y$
- $(\forall x, y) x \cdot y = 1 \rightarrow x = 1 = y$
- $(\forall x_1, x_2, y_1, y_2)(\exists z_{1,1}, z_{1,2}, z_{2,1}, z_{2,2})$ $[x_1 + x_2 \rightarrow \bigwedge_{i=1}^2 (x_i = z_{i,1} + z_{i,2} \& y_i = z_{1,i} + z_{2,i})]$

Question 1 What is $Th_{\mathcal{L}_{ring}}({\widetilde{Def}(\mathcal{M}) : \mathcal{M} \text{ a first-order structu}})$

The Grothendieck ring

Given a rig $(R, +, \cdot, 0, 1)$, there is a universal morphism from ROn $R \times R$ define $(a, b) \sim (c, d) \Leftrightarrow (\exists z \in R) \ a + d + z = c + d$ The quotient $\mathcal{R}(R) := (R \times R) / \sim$ is a ring and the map $R \rightarrow$ given by $x \mapsto [(x, 0)]_{\sim} (= x - 0)$ is a rig morphism.

In general, the morphism $R \to \mathcal{R}(R)$ need not be injective.

Definition 7 A (weak) Euler characteristic on \mathcal{M} is a \mathcal{L}_{ring} -model $\chi : \widetilde{\text{Def}}(\mathcal{M}) \to R$ where R is a ring.

Definition 8 The Grothendieck ring of a first-order structure \mathcal{N} $K_0(\mathcal{M}) := \mathcal{R}(\widetilde{\text{Def}}(\mathcal{M}))$. The ringification map $\chi_0 : \widetilde{\text{Def}}(\mathcal{M})$ - is the universal (weak) Euler characteristic on \mathcal{M} .

Aside on distributive categories

Definition 9 A distributive category is a category C with an ini \bot , a final object \top , finite limits and finite colimits, and for which natural morphism $(A \times C) \coprod (A \times B) \rightarrow A \times (B \coprod C)$ is an isomorphism for any $A, B, C \in Ob(C)$.

For any small distributive category C, the set of isomorphism clobjects forms a rig R(C). The rig of model \mathcal{M} is the special cas $C = \text{Def}(\mathcal{M})$.

Question 2 Are the theories $\operatorname{Th}_{\mathcal{L}_{\operatorname{ring}}}(\{R(\mathcal{C}) : \mathcal{C} \text{ a small distribute} category with <math>[\bot] \neq [\top]\}$ and $\operatorname{Th}_{\mathcal{L}_{\operatorname{ring}}}(\{\widetilde{\operatorname{Def}}(\mathcal{M}) : \mathcal{M} \text{ a first-ord} structure })$ the same?

Examples of $K_0(\mathcal{M})$

- If *M* is a finite structure, then Def(*M*) ≅ N with the map
 [X] → ||X||. The Grothendieck ring is Z and every Euler characteristic is given by counting modulo some integer.
- If $\mathcal{M} = (\omega, S)$, then $K_0(\mathcal{M}) = 0$ as the decomposition $\emptyset \dot{\cup} \omega = \{0\} \dot{\cup} S(\omega)$ and the definable isomorphism $S : \omega \rightarrow$ yield $0 + [\omega] = 1 + [\omega]$ in $\widetilde{\text{Def}}(\mathcal{M})$ and hence 0 = 1 in K_0 However, $\widetilde{\text{Def}}(\mathcal{M})$ is more complicated.

More examples of $K_0(\mathcal{M})$

- If \mathcal{M} is an o-minimal expansion of a field, then $K_0(\mathcal{M}) =$
- If *M* = (ℂ, +, ·, 0, 1), then *K*₀(*M*) is very complicated. A least, the universal Euler characteristic on ℝ induces an Eucharacteristic on ℂ as ℂ is interpretable in ℝ.
- *K*₀(Q, <) embeds in Q[{*X_a*}_{{*a*∈Q∪{∞}}}] as the subring of n polynomials. (Matthew Frank)

Strong Euler characteristics

Definition 10 A strong Euler characteristic $\chi : \widetilde{\text{Def}}(\mathcal{M}) \to R$ structure \mathcal{M} is an Euler characteristic satisfying the fibration of

If $\pi : E \to B$ is definable function between definable sets, $f \in all \ b \in B$ one has $\chi([\pi^{-1}\{b\}]) = f$, then $\chi([E]) = f \cdot \chi([B])$

The fibration condition differs from the other axioms for an Eul characteristic in two important respects:

- It is not rig-theortetic.
- In any reasonable language it is syntactically more complic the other axioms.

Proposition 11 On any structure \mathcal{M} there is a universal strong characteristic $\chi^s : \widetilde{\text{Def}}(\mathcal{M}) \to K^s(\mathcal{M}).$

Examples of strong Euler characteristi

- The universal weak Euler characteristics on finite structure o-minimal expansions of fields are strong.
- More generally, if *M* is a structure with the property that e definable function is a locally trivial fibration, then every E characteristic on *M* is strong.
- The universal weak Euler characteristic on \mathbb{C} is *not* strong.
- Every strong Euler characteristic on an algebraically closed positive characteristic is trivial.

Dependence on the theory

Theorem 12 If $\mathcal{M} \equiv \mathcal{N}$, then $\widetilde{\text{Def}}(\mathcal{M}) \equiv_{\exists_1} \widetilde{\text{Def}}(\mathcal{N})$.

Proof:

- If \mathcal{U} is an ultrafilter, then $\operatorname{Def}(\mathcal{M}) \subseteq \operatorname{Def}(\mathcal{M}^{\mathcal{U}}) \subseteq \operatorname{Def}(\mathcal{M})$ the inclusion $\operatorname{Def}(\mathcal{M}) \subseteq \operatorname{Def}(\mathcal{M})^{\mathcal{U}}$ is elementary in the full of $\operatorname{Def}(\mathcal{M})$.
- Thus, $\operatorname{Def}(\mathcal{M}) \preceq_{\exists_1} \operatorname{Def}(\mathcal{M}^{\mathcal{U}}).$
- As $\widetilde{\text{Def}}(\mathcal{M})$ is existentially interpretable in $\text{Def}(\mathcal{M})$, $\widetilde{\text{Def}}(\mathcal{M}) \equiv \widetilde{\text{Def}}(\mathcal{M}^{\mathcal{U}}).$
- By the Keisler-Shelah theorem, $\mathcal{M} \equiv \mathcal{N} \Rightarrow (\exists \mathcal{U}) \ \mathcal{M}^{\mathcal{U}} \cong \mathcal{M}$
- Thus, $\widetilde{\text{Def}}(\mathcal{M}) \equiv_{\exists_1} \widetilde{\text{Def}}(\mathcal{M}^{\mathcal{U}}) \cong \widetilde{\text{Def}}(\mathcal{N}^{\mathcal{U}}) \equiv_{\exists_1} \widetilde{\text{Def}}(\mathcal{N}).$

Some failures of invariance

It can happen that $\mathcal{M} \equiv \mathcal{N}$ but $K_0(\mathcal{M}) \not\equiv_{\forall \exists} K_0(\mathcal{N})$.

Example 3 Take $\mathcal{L} = \mathcal{L}(E)$ where *E* is a binary relation. Let \mathcal{L} -structure on which *E* is an equivalence relation, \mathcal{M} has one equivalence class of each finite cardinality, and \mathcal{M} has no infinite Let $\mathcal{N} \succ \mathcal{M}$ be a proper elementary extension. Set r :=the nur infinite equivalence classes in \mathcal{N} . Then $K_0(\mathcal{M}) \cong \mathbb{Z}[X]$ while $K_0(\mathcal{N}) \cong \mathbb{Z}[\{X_i\}_{i \le r}]$. These rings are distinguished by an $\forall \exists$ -s

There are examples of $\mathcal{M} \prec \mathcal{N}$ with $K^{s}(\mathcal{M}) = 0$ and $K^{s}(\mathcal{N})$

Question 4 If \mathcal{M} admits a strong Euler characteristic, do all el extensions of \mathcal{M} also admit a strong Euler characteristic?

Pigeon Hole Principles

Definition 13 The structure \mathcal{M} satisfies the Pigeon Hole Princ written $\mathcal{M} \models$ PHP, if whenever $f : A \rightarrow A$ is a definable inject function of definable sets, then f is surjective. \mathcal{M} satisfies the Pigeon Hole Principle, written $\mathcal{M} \models$ onto - PHP, if there is no bijection $f : A \rightarrow A \setminus \{*\}$ in \mathcal{M} .

Proposition 14 $\mathcal{M} \models \text{onto} - \text{PHP} \Leftrightarrow K_0(\mathcal{M}) \neq 0$

The Grothendieck group of \mathbb{Q}_p

Question 5 (Luc Bélair) Is there a definable (in the language objection between \mathbb{Q}_p and \mathbb{Q}_p^{\times} ?

Theorem 15 (Jean-Pierre Serre) *The Grothendieck ring of the of p-adic analytic manifolds is isomorphic to* $\mathbb{Z}/(p-1)\mathbb{Z}$.

Theorem 16 (Raf Cluckers, Deirdre Haskell) $K_0(\mathbb{Q}_p) = 0$

Corollary 17 There is a definable bijection $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^n \setminus \{(f, f) \in n\}$ for some n.

In fact, the Cluckers-Haskell proof gives the stronger result that Grothendieck *group* of \mathbb{Q}_p is zero from which one can construct explicit definable bijection between \mathbb{Q}_p and \mathbb{Q}_p^{\times} .

Ordered Euler characteristics

Definition 18 On a rig $(R, +, \cdot, 0, 1)$ define $x \le y \Leftrightarrow (\exists z \in R) \ x + z = y.$

Definition 19 A partially ordered Euler characteristic on \mathcal{M} is $\mathcal{L}_{ring}(\leq)$ -morphism $\chi : \widetilde{\text{Def}}(\mathcal{M}) \to (R, +, \cdot, \leq, 0, 1)$ where \leq partial order on R satisfying

• 0 < 1,

- $(\forall x, y, z) \ x \le y \to x + z \le y + z$, and
- $(\forall x, y, z) (z > 0 \& x \le y) \rightarrow z \cdot x \le z \cdot y.$

Proposition 20 $\mathcal{M} \models PHP \Leftrightarrow \mathcal{M}$ admits an ordered Euler characteristic.

Ax's Theorem

Theorem 21 (James Ax) If $f : \mathbb{C}^n \to \mathbb{C}^n$ is an injective polyn mapping, then f is surjective.

Theorem 22 Every algebraically closed field admits an ordere characteristic.

Euler characteristics on limits: ultraprod If $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i / \mathcal{U}$ is an ultraproduct, then $\widetilde{\text{Def}}(\mathcal{M})$ is a substru $\prod_{i \in I} \widetilde{\text{Def}}(\mathcal{M}_i) / \mathcal{U}$. If for each $i \in I$ we have an Euler characteristic $u \in \widetilde{\text{Def}}(\mathcal{M})$

If for each $i \in I$ we have an Euler characteristic χ_i : $Def(\mathcal{M}_i)$ then the ultaproduct χ/\mathcal{U} (defined on $\prod_{i \in I} \widetilde{Def}(M_i)/\mathcal{U}$) gives an characteristic on \mathcal{M} with values in $\prod_{i \in I} R_i/\mathcal{U}$.

Example 6 If M is an ultraproduct of finite structures, then M ordered Euler characteristic with values in a nonstandard extension

Euler characteristics on limits: direct lin

Definition 23 Let \mathcal{M} be a structure and $A \subseteq \mathcal{M}$. Then A is declosed in \mathcal{M} if for each \mathcal{L}_A -definable function $f : \mathcal{M}^n \to \mathcal{M}$ of $f(A^n) \subseteq A$.

Definition 24 If (I, \leq) is a directed set, then the filter of cones $C := \{Y \subseteq I : (\exists a \in I) | \{b \in I : b \geq a\} \subseteq Y\}.$

Proposition 7 If $\mathcal{M} = \lim_{i \in I} \mathcal{M}_i$ is a direct limit of definably closes substructures, \mathcal{M} admits quantifier elimination in \mathcal{L} , and for each we have an Euler characteristic $\chi_i : \widetilde{\text{Def}}(\mathcal{M}_i) \to R_i$; then there Euler characteristic $\chi : \widetilde{\text{Def}}(\mathcal{M}) \to \prod_{i \in I} R_i / \mathcal{C}$ defined by $\chi([X]) = [\chi_i(\varphi(\mathcal{M}_i))]_{\mathcal{C}}$ where φ is a quantifier-free definition

Grothendieck ring-theoretic proof of Ax's the

- Algebraically closed fields eliminate quantifiers. (Claude C Alfred Tarski)
- Each finite field considered as a subset of its algebraic clos definably closed.
- The algebraic closure of a finite field is a direct limit of its subfields.
- For any nonprincipal ultrafilter \mathcal{U} on the set of prime numb $\mathbb{C} \cong \prod \mathbb{F}_p^{\mathrm{alg}} / \mathcal{U}.$

Thus, \mathbb{C} admits a nontrivial ordered Euler characteristic. Hence $\mathbb{C} \models$ PHP and Ax's Theorem follows as as a special case.

Some quotients and subrings of $K_0(\mathbb{C})$

The above construction of an ordered Euler characteristic on \mathbb{C} used to show that $K_0(\mathbb{C})$ is very large.

Theorem 25 If *L* is an algebraically closed field and $\{E_i(L) : family of pairwise non-isogeneous elliptic curves over$ *L* $, then <math>\{\chi_0([E_i(L)]) : i \in I\}$ is algebraically independent in $K_0(L)$. In particular, there is a ring embedding $\mathbb{Z}[\{X_i : i \in 2^{\aleph_0}\}] \hookrightarrow K_0([X_i : i \in 2^{\aleph_0}])$

Since each element of $K_0(\mathbb{C})$ is represented by a variety, cohon theories on the category of affine complex algebraic varieties ca Euler characteristics on \mathbb{C} . For example, Hodge theory yields a map $K_0(\mathbb{C}) \to \mathbb{Z}[X, Y]$.

Motivic integrals and $K_0(\mathbb{C})$

Set
$$\mathbb{L} := \chi_0([\mathbb{C}]) \in K_0(\mathbb{C}).$$

Set
$$\mathcal{M}_{\text{loc}} := K_0(\mathbb{C})[\mathbb{L}^{-1}].$$

Define a filtration on \mathcal{M}_{loc} by letting $F^m \mathcal{M}_{loc}$ be the group ger $\{\chi_0([S(\mathbb{C})])\mathbb{L}^{-i} : i - \dim S \ge m, S \text{ an irreducible variety }\}.$

Let $\widehat{\mathcal{M}}$ be the completion of \mathcal{M}_{loc} with respect to this filtration

Given a (pure dimensional affine) variety $X \subseteq \mathbb{A}^n$ defined over following Kontsevich, defines a measure $\mu_X : \text{Def}^n(\mathbb{C}[[t]]) \rightarrow$

While μ_X is countably additive, it does not respect definable isomorphisms so that it cannot be used to produce an Euler cha on $\mathbb{C}[[t]]$.

Definition 26 If $f : X(\mathbb{C}[[t]]) \to \mathbb{Z}$ is a definable function and $A \subseteq X(\mathbb{C}[[t]])$ is a definable set, then the motivic integral of $f \int_A \mathbb{L}^{-f} d\mu_X$ if this integral converges.

Schanuel dimensions

Definition 27 A dimension d on a structure \mathcal{M} is a rig homom $d: \widetilde{\text{Def}}(\mathcal{M}) \to D$ satisfying d(x + x) = d(x) universally.

On any rig *R* one defines a partial quasi-order \leq by $x \leq y \Leftrightarrow (\forall n \in \mathbb{Z}_+) (\exists z \in R) n \cdot x + z = y$. Define an equivarelation $x \sim y \Leftrightarrow x \leq y \& y \leq x$.

Definition 28 The Schanuel dimension of a structure \mathcal{M} is the map dim : $\widetilde{\text{Def}}(\mathcal{M}) \to \widetilde{\text{Def}}(\mathcal{M})/\sim =: \mathcal{D}(\mathcal{M}).$

Examples of dimensions

- $\mathcal{D}(\mathbb{R}) \cong (\{-\infty\} \cup \omega, \vee, +, -\infty, 0) \cong \mathcal{D}(\mathbb{Q}_p)$
- $\mathcal{D}(\mathbb{Z}) = \{ [\varnothing]_{\sim}, [\{0\}]_{\sim}, [\mathbb{Z}]_{\sim} \}$
- If *R* is any global stability theoretic rank (Morley, Lascar, Sthen *R* is a dimension.
- Given a cardinal κ, define κ* := {0, 1} ∪ {λ : ℵ₀ ≤ λ ≤ κ} structure M of cardinality κ, the function d : Def(M) → defined by d([X]) = 1 if 0 < ||X|| < ℵ₀ and d([X]) = ||X| is a dimension.

Finite structures with dimension and mea

Definition 29 (Dugald Macpherson and Charles Steinhorn) of finite \mathcal{L} -structures is an asymptotic class with dimension and if for any \mathcal{L} -formula $\varphi(x, y_1, \dots, y_m)$ there are

- real numbers B and C,
- a natural number N,
- real numbers μ_1, \ldots, μ_N , and
- formulas $\psi_0(y_1, ..., y_n), ..., \psi_N(y_1, ..., y_m)$

such that for any $\mathcal{M} \in \mathcal{C}$ and $b \in \mathcal{M}^m$

- $\mathcal{M} \models \bigvee_{i=1}^{N} \psi_i(b)$ and
- if $\mathcal{M} \models \psi_i(b)$ for i > 0 then $| \| \varphi(\mathcal{M}; b) \| \mu_i \| \mathcal{M} \| | < C$ and
- if $\mathcal{M} \models \psi_0(b)$, then $\|\varphi(M, b)\| < B$.

Pseudofinite structures

Definition 30 An infinite structure \mathcal{M} is strongly pseudofinite isomorphic to an ultraproduct of finite structures. An infinite structure is pseudofinite if every sentence true in \mathcal{M} is satisfied by some structure.

If \mathcal{M} is pseudofinite, then $K_0(\mathcal{M})$ embeds as an ordered subrir elementary extension of \mathbb{Z} .

Moreover, if \mathcal{M} is strongly pseudofinite, then χ_0 is a strong Eu characteristic. In fact, χ_0 satisfies the Lebesgue conditions.

Definition 31 An ordered Euler characteristic $\chi : \widetilde{\text{Def}}(\mathcal{M}) \rightarrow$ satisfies the upper (resp. lower) Lebesgue condition if wheneve $\pi : E \rightarrow B$ is a definable function and $f \in R$ with $\chi([\pi^{-1}\{b\}])$ (resp. $\leq f$) for all $b \in B$, then $\chi([E]) \geq f \cdot \chi([B])$ (resp. $\leq f$

Questions about Euler characteristics of pseudofinite structures

Question 8 Does $\chi_0 : \widetilde{\text{Def}}(\mathcal{M}) \to K_0(\mathcal{M})$ always satisfy the 1 conditions for \mathcal{M} a pseudofinite structure? Is χ_0 always strong pseudofinite structures?

Question 9 If \mathcal{M} is infinite and $\chi_0 : \widetilde{\text{Def}}(\mathcal{M}) \to K_0(\mathcal{M})$ satis Lebesgue conditions, must \mathcal{M} be pseudofinite?

Fields with strong ordered Euler character

Theorem 32 (James Ax) A field K is pseudofinite if and only i

- *K* is perfect: if charK = p > 0, then $K \models (\forall x)(\exists y) y^p =$
- $\operatorname{Gal}(K^{alg}/K) \cong \widehat{\mathbb{Z}}$: for each natural number n, K has exactly separable extension of degree n and that extension is Galow and
- K is pseudoalgebraically closed: for each absolutely irred polynomial f(X, Y) ∈ K[X, Y] there is some (a, b) ∈ K² f(a, b) = 0.

Definition 33 A field K is quasifinite if K is perfect and $\operatorname{Gal}(K^{alg}/K) \cong \widehat{\mathbb{Z}}.$

Theorem 34 If the field K admits a nontrivial strong ordered I characteristic, then K is quasifinite.

Proof of quasifiniteness

- Perfection requires only an ordered Euler characteristic. If then χ([K]) = χ([K^p]) < χ([K]).
- An ordered Euler characteristic χ gives a leading term function $\ell_{\chi} : K_0(R) \to L_{\chi}$ defined by $\ell_{\chi}(x) = \ell_{\chi}(y) \Leftrightarrow$ $(\forall n \in \omega) \ n |\chi(x) - \chi(y)| < \chi(x) \& \ n |\chi(x) - \chi(y)| < \chi(y)$
- Reduce to the case of *K* infinite.
- Identify $\{f \in K[X] : \deg f = n \text{ and } f \text{ is monic}\}$ with K^n .
- $\ell_{\chi}([\{f \in K[X] : \deg f = n \& f \text{ is irreducible }\}]) = \frac{1}{n}\ell_{\chi}(f)$
- If $[L:K] \ge n$, then $\ell_{\chi}(\{f:K[x]/(f) \cong L\}) \ge \frac{1}{n}\ell_{\chi}([K])$

Some questions

Question 10 Is there a combinatorially transparent condition e to $K^{s}(\mathcal{M}) \neq 0$?

Question 11 Is $\operatorname{Th}_{\mathcal{L}_{\operatorname{ring}}}(K_0(G))$ an invariant of $\operatorname{Th}_{\mathcal{L}(+,0)}(G)$ fo abelian group?

Question 12 Are there transparent (though non-trivial) conditivity which imply simplicity?

Reference

JAN KRAJÍČEK and THOMAS SCANLON, Combinatorics with sets: Euler characteristics and Grothendieck rings, *Bulletin of S Logic* **6**, no 3., September 2000, pages 311 – 330.