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χ = F − E + V
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Interpretation ofχ
• Euler-Poincaŕe characteristic:χ(X) =

∑
(−1)i dim H i (X)

• (hyper-)graph theoretic/combinatorial version

• additive invariant of definable sets

3



O-minimal structures

Definition 1 A linearly ordered structureM = (M, <, · · · ) in a

language extending the language of ordered sets iso-minimal if every

(parametrically) definable subset ofM is a finite Boolean combination of

points and intervals of the form(a,b) with a,b ∈ M ∪ {−∞,∞}.

Examples:

• (Q, <)

• (D, < .+, {λ·}λ∈D) whereD is an ordered division ring.

• (R, <,+, ·,0,1)

• (R, <,+, ·,exp,0,1)
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Abstract Euler characteristics

Definition 2 AnEuler characteristicon a first-order structureM is a

functionχ from the set of (parametrically) definable subsets of powers of

M to some ring satisfying

• χ(X) = χ(Y) if there is a definable bijection between X and Y ,

• χ(X∪̇Y) = χ(X)+ χ(Y),

• χ(X × Y) = χ(X) · χ(Y), and

• χ({∗}) = 1 for any∗ ∈M.
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Euler characteristics on o-minimal structures

Theorem 3 (van den Dries) If M = (M, <,+, ·,0,1, . . .) is an

o-minimal expansion of an ordered field, then there is a unique Euler

characteristicχ onM with values inZ. Moreover, if the underlying field

is R, thenχ agrees with the topological Euler characteristics on definable

manifolds.

The o-minimal Euler characteristic is a finer invariant than the topological

Euler characteristic. For example,χ0((0,1)) = −1 6= 0 = χ0([0,1)) but

χtop((0,1)) = −1 = χtop([0,1)).
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The rig of definable sets

Definition 4 Given anL-structureM and a natural number n,Defn(M)

is the set of allLM -definable subsets of ofMn. The setDef(M) is
∞⋃

n=0
Defn(M).

Def(M) forms a category with the morphisms between two definable sets

being the set of definable functions between them.

Definition 5 D̃ef(M) is the set of isomorphism classes of definable

subsets of powers ofM. We write[ ] : Def(M) → D̃ef(M) for the map

which associates to a definable set its isomorphism type.D̃ef(M) carries

a naturalLring-structure with[X] + [Y] := [X∪̇Y], [X] · [Y] := [X × Y],

0 := [∅], and1 := [{∗}].
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Rigs
D̃ef(M) is arig or semiring, but is never a ring as, for instance,

D̃ef(M) |= 0 6= 1 & (∀ x, y) x + y = 0 → x = y = 0.

Definition 6 A rig (or a semiring) is anLring-structure for which

• + is a commutative, associative operation with null element0,

• · is an associative operation with null element1,

• left- and right-multiplication by0 are the zero function, and

• · is left- and right-distributive over addition.

The rig iscommutativeif multiplication is also a commutative operation.
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Axioms for Def(M)

The rig Def(M) satisfies

• 0 6= 1

• (∀x, y) x · y = y · x (commutativity)

• (∀x, y) x + y = 0 → x = 0 = y

• (∀x, y) x · y = 1 → x = 1 = y

• (∀x1, x2, y1, y2)(∃z1,1, z1,2, z2,1, z2,2)

[x1 + x2 →
∧2

i =1(xi = zi,1 + zi,2 & yi = z1,i + z2,i )]

Question 1 What is ThLring({D̃ef(M) : M a first-order structure})?
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The Grothendieck ring
Given a rig(R,+, ·,0,1), there is a universal morphism fromR to a ring.

On R × R define(a,b) ∼ (c,d) ⇔ (∃z ∈ R) a + d + z = c + b + z.

The quotientR(R) := (R × R)/∼ is a ring and the mapR → R(R)
given byx 7→ [(x,0)]∼ (=“x − 0”) is a rig morphism.

In general, the morphismR → R(R) need not be injective.

Definition 7 A (weak) Euler characteristic onM is aLring-morphism

χ : D̃ef(M) → R where R is a ring.

Definition 8 The Grothendieck ring of a first-order structureM is

K0(M) := R(D̃ef(M)). The ringification mapχ0 : D̃ef(M) → K0(M)

is the universal (weak) Euler characteristic onM.
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Aside on distributive categories

Definition 9 A distributive categoryis a categoryC with an initial object

⊥, a final object>, finite limits and finite colimits, and for which the

natural morphism(A × C)
∐
(A × B) → A × (B

∐
C) is an

isomorphism for any A, B,C ∈ Ob(C).

For any small distributive categoryC, the set of isomorphism classes of

objects forms a rigR(C). The rig of modelM is the special case of

C = Def(M).

Question 2 Are the theories ThLring({R(C) : C a small distributive

category with [⊥] 6= [>]}) and ThLring({D̃ef(M) : M a first-order

structure}) the same?
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Examples ofK0(M)

• If M is a finite structure, theñDef(M) ∼= N with the map being

[X] 7→ ||X||. The Grothendieck ring isZ and every Euler

characteristic is given by counting modulo some integer.

• If M = (ω, S), thenK0(M) = 0 as the decomposition

∅∪̇ω = {0}∪̇S(ω) and the definable isomorphismS : ω → S(ω)

yield 0+ [ω] = 1 + [ω] in D̃ef(M) and hence 0= 1 in K0(M).

However,D̃ef(M) is more complicated.
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More examples ofK0(M)

• If M is an o-minimal expansion of a field, thenK0(M) = Z.

• If M = (C,+, ·,0,1), thenK0(M) is very complicated. At the very

least, the universal Euler characteristic onR induces an Euler

characteristic onC asC is interpretable inR.

• K0(Q, <) embeds inQ[{Xa}{a∈Q∪{∞}}] as the subring of numerical

polynomials. (Matthew Frank)
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Strong Euler characteristics

Definition 10 A strong Euler characteristicχ : D̃ef(M) → R on a

structureM is an Euler characteristic satisfying the fibration condition:

If π : E → B is definable function between definable sets, f∈ R, and for

all b ∈ B one hasχ([π−1
{b}]) = f , thenχ([E]) = f · χ([B]).

The fibration condition differs from the other axioms for an Euler
characteristic in two important respects:

• It is not rig-theortetic.

• In any reasonable language it is syntactically more complicated than
the other axioms.

Proposition 11 On any structureM there is a universal strong Euler

characteristicχs : D̃ef(M) → K s(M).
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Examples of strong Euler characteristics
• The universal weak Euler characteristics on finite structures and

o-minimal expansions of fields are strong.

• More generally, ifM is a structure with the property that every

definable function is a locally trivial fibration, then every Euler

characteristic onM is strong.

• The universal weak Euler characteristic onC is not strong.

• Every strong Euler characteristic on an algebraically closed field of

positive characteristic is trivial.
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Dependence on the theory

Theorem 12 If M ≡ N , thenD̃ef(M) ≡∃1 D̃ef(N ).

Proof:

• If U is an ultrafilter, then Def(M) ⊆ Def(MU ) ⊆ Def(M)U while

the inclusion Def(M) ⊆ Def(M)U is elementary in the full language

of Def(M).

• Thus, Def(M) �∃1 Def(MU ).

• As D̃ef(M) is existentially interpretable in Def(M),

D̃ef(M) ≡ D̃ef(MU ).

• By the Keisler-Shelah theorem,M ≡ N ⇒ (∃U)MU ∼= N (U).

• Thus,D̃ef(M) ≡∃1 D̃ef(MU ) ∼= D̃ef(NU ) ≡∃1 D̃ef(N ).

♦
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Some failures of invariance
It can happen thatM ≡ N but K0(M) 6≡∀∃ K0(N ).

Example 3 TakeL = L(E) whereE is a binary relation. LetM be the

L-structure on whichE is an equivalence relation,M has one

equivalence class of each finite cardinality, andM has no infinite classes.

LetN �M be a proper elementary extension. Setr :=the number of

infinite equivalence classes inN . ThenK0(M) ∼= Z[X] while

K0(N ) ∼= Z[{Xi }i ≤r ]. These rings are distinguished by an∀∃-sentence.

There are examples ofM ≺ N with K s(M) = 0 andK s(N ) 6= 0.

Question 4 If M admits a strong Euler characteristic, do all elementary

extensions ofM also admit a strong Euler characteristic?
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Pigeon Hole Principles

Definition 13 The structureM satisfies thePigeon Hole Principle,

writtenM |= PHP, if whenever f: A → A is a definable injective

function of definable sets, then f is surjective.M satisfies theOnto

Pigeon Hole Principle, writtenM |= onto− PHP, if there is no definable

bijection f : A → A \ {∗} inM.

Proposition 14 M |= onto− PHP⇔ K0(M) 6= 0
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The Grothendieck group ofQp

Question 5 (Luc B́elair) Is there a definable (in the language of rings)

bijection betweenQp andQ×
p ?

Theorem 15 (Jean-Pierre Serre)The Grothendieck ring of the category

of p-adic analytic manifolds is isomorphic toZ/(p − 1)Z.

Theorem 16 (Raf Cluckers, Deirdre Haskell) K0(Qp) = 0

Corollary 17 There is a definable bijection f: Qn
p → Qn

p \ {(0, . . . ,0)}

for some n.

In fact, the Cluckers-Haskell proof gives the stronger result that the

Grothendieckgroupof Qp is zero from which one can construct an

explicit definable bijection betweenQp andQ×
p .
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Ordered Euler characteristics

Definition 18 On a rig (R,+, ·,0,1) define

x ≤ y ⇔ (∃z ∈ R) x + z = y.

Definition 19 A partially ordered Euler characteristic onM is an

Lring(≤)-morphismχ : D̃ef(M) → (R,+, ·,≤,0,1) where≤ is a

partial order on R satisfying

• 0< 1,

• (∀x, y, z) x ≤ y → x + z ≤ y + z, and

• (∀x, y, z) (z> 0 & x ≤ y) → z · x ≤ z · y.

Proposition 20 M |= P H P ⇔M admits an ordered Euler

characteristic.
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Ax’s Theorem

Theorem 21 (James Ax)If f : Cn
→ Cn is an injective polynomial

mapping, then f is surjective.

Theorem 22 Every algebraically closed field admits an ordered Euler

characteristic.

21



Euler characteristics on limits: ultraproducts
If M =

∏
i ∈I
Mi /U is an ultraproduct, theñDef(M) is a substructure of∏

i ∈I
D̃ef(Mi )/U .

If for eachi ∈ I we have an Euler characteristicχi : D̃ef(Mi ) → Ri ,

then the ultaproductχ/U (defined on
∏
i ∈I

D̃ef(Mi )/U) gives an Euler

characteristic onM with values in
∏
i ∈I

Ri /U .

Example 6 If M is an ultraproduct of finite structures, thenM admits an

ordered Euler characteristic with values in a nonstandard extension ofZ.
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Euler characteristics on limits: direct limits

Definition 23 LetM be a structure and A⊆M. Then A isdefinably

closed inM if for eachLA-definable function f: Mn
→M one has

f (An) ⊆ A.

Definition 24 If (I ,≤) is a directed set, then the filter of cones on I is

C := {Y ⊆ I : (∃a ∈ I ) {b ∈ I : b ≥ a} ⊆ Y}.

Proposition 7 If M = lim
−→
i ∈I

Mi is a direct limit of definably closed

substructures,M admits quantifier elimination inL, and for each i∈ I

we have an Euler characteristicχi : D̃ef(Mi ) → Ri ; then there is an

Euler characteristicχ : D̃ef(M) →
∏
i ∈I

Ri /C defined by

χ([X]) = [χi (ϕ(Mi ))]C whereϕ is a quantifier-free definition of X.
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Grothendieck ring-theoretic proof of Ax’s theorem
• Algebraically closed fields eliminate quantifiers. (Claude Chevallay,

Alfred Tarski)

• Each finite field considered as a subset of its algebraic closure is

definably closed.

• The algebraic closure of a finite field is a direct limit of its finite

subfields.

• For any nonprincipal ultrafilterU on the set of prime numbers,

C ∼=
∏

Falg
p /U .

Thus,C admits a nontrivial ordered Euler characteristic. Hence,

C |= PHP and Ax’s Theorem follows as as a special case.
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Some quotients and subrings ofK0(C)
The above construction of an ordered Euler characteristic onC can be

used to show thatK0(C) is very large.

Theorem 25 If L is an algebraically closed field and{Ei (L) : i ∈ I } is a

family of pairwise non-isogeneous elliptic curves over L, then

{χ0([Ei (L)]) : i ∈ I } is algebraically independent in K0(L). In

particular, there is a ring embeddingZ[{Xi : i ∈ 2ℵ0}] ↪→ K0(C).

Since each element ofK0(C) is represented by a variety, cohomology

theories on the category of affine complex algebraic varieties can yield

Euler characteristics onC. For example, Hodge theory yields a surjective

mapK0(C) → Z[X,Y].

25



Motivic integrals andK0(C)
SetL := χ0([C]) ∈ K0(C).

SetMloc := K0(C)[L−1].

Define a filtration onMloc by letting FmMloc be the group generated by
{χ0([S(C)])L−i : i − dim S ≥ m, San irreducible variety}.

Let M̂ be the completion ofMloc with respect to this filtration.

Given a (pure dimensional affine) varietyX ⊆ An defined overC, Denef,
following Kontsevich, defines a measureµX : Defn(C[[ t ]]) → M̂.

WhileµX is countably additive, it does not respect definable
isomorphisms so that it cannot be used to produce an Euler characteristic
onC[[ t ]].

Definition 26 If f : X(C[[ t ]]) → Z is a definable function and

A ⊆ X(C[[ t ]]) is a definable set, then themotivic integral of f over A is∫
A L− f dµX if this integral converges.
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Schanuel dimensions

Definition 27 A dimension d on a structureM is a rig homomorphism

d : D̃ef(M) → D satisfying d(x + x) = d(x) universally.

On any rigR one defines a partial quasi-order� by

x � y ⇔ (∀n ∈ Z+) (∃z ∈ R) n · x + z = y. Define an equivalence

relationx ∼ y ⇔ x � y & y � x.

Definition 28 The Schanuel dimension of a structureM is the quotient

mapdim : D̃ef(M) → D̃ef(M)/∼ =: D(M).
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Examples of dimensions
• D(R) ∼= ({−∞} ∪ ω,∨,+,−∞,0) ∼= D(Qp)

• D(Z) = {[∅]∼, [{0}]∼, [Z]∼}

• If R is any global stability theoretic rank (Morley, Lascar, Shelah),

thenR is a dimension.

• Given a cardinalκ, defineκ∗ := {0,1} ∪ {λ : ℵ0 ≤ λ ≤ κ}. For a

structureM of cardinalityκ, the functiond : D̃ef(M) → (κ∗,∨, ·)

defined byd([X]) = 1 if 0 < ||X|| < ℵ0 andd([X]) = ||X|| otherwise

is a dimension.
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Finite structures with dimension and measure

Definition 29 (Dugald Macpherson and Charles Steinhorn)A classC
of finiteL-structures is an asymptotic class with dimension and measure

if for anyL-formulaϕ(x, y1, . . . , ym) there are

• real numbers B and C,

• a natural number N,

• real numbersµ1, . . . , µN , and

• formulasψ0(y1, . . . , yn), . . . , ψN(y1, . . . , ym)

such that for anyM ∈ C and b∈Mm

• M |=
∨N

i =1ψi (b) and

• if M |= ψi (b) for i > 0 then| ||ϕ(M; b)|| − µi ||M||| < C
√

||M||,

and

• if M |= ψ0(b), then||ϕ(M,b)|| < B.
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Pseudofinite structures

Definition 30 An infinite structureM is strongly pseudofiniteif it is

isomorphic to an ultraproduct of finite structures. An infinite structureM
is pseudofiniteif every sentence true inM is satisfied by some finite

structure.

If M is pseudofinite, thenK0(M) embeds as an ordered subring of an
elementary extension ofZ.

Moreover, ifM is strongly pseudofinite, thenχ0 is a strong Euler
characteristic. In fact,χ0 satisfies the Lebesgue conditions.

Definition 31 An ordered Euler characteristicχ : D̃ef(M) → R

satisfies the upper (resp. lower) Lebesgue condition if whenever

π : E → B is a definable function and f∈ R withχ([π−1
{b}]) ≥ f

(resp.≤ f ) for all b ∈ B, thenχ([E]) ≥ f · χ([B]) (resp.≤ f · χ([B])).
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Questions about Euler characteristics on
pseudofinite structures

Question 8 Doesχ0 : D̃ef(M) → K0(M) always satisfy the Lebesgue

conditions forM a pseudofinite structure? Isχ0 always strong on

pseudofinite structures?

Question 9 If M is infinite andχ0 : D̃ef(M) → K0(M) satisfies the

Lebesgue conditions, mustM be pseudofinite?
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Fields with strong ordered Euler characteristics

Theorem 32 (James Ax)A field K is pseudofinite if and only if

• K is perfect: ifcharK= p > 0, then K |= (∀x)(∃y) yp
= x,

• Gal(K alg/K ) ∼= Ẑ: for each natural number n, K has exactly one

separable extension of degree n and that extension is Galois over K ,

and

• K is pseudoalgebraically closed: for each absolutely irreducible

polynomial f(X,Y) ∈ K [X,Y] there is some(a,b) ∈ K 2 with

f (a,b) = 0.

Definition 33 A field K isquasifiniteif K is perfect and

Gal(K alg/K ) ∼= Ẑ.

Theorem 34 If the field K admits a nontrivial strong ordered Euler

characteristic, then K is quasifinite.
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Proof of quasifiniteness
• Perfection requires only an ordered Euler characteristic. IfK 6= K p,

thenχ([K ]) = χ([K p]) < χ([K ]).

• An ordered Euler characteristicχ gives a leading term function

`χ : K0(R) → Lχ defined bỳ χ (x) = `χ (y) ⇔

(∀n ∈ ω) n|χ(x)− χ(y)| < χ(x) & n|χ(x)− χ(y)| < χ(y).

• Reduce to the case ofK infinite.

• Identify { f ∈ K [X] : degf = n and f is monic} with K n.

• `χ ([{ f ∈ K [X] : degf = n & f is irreducible}]) =
1
n`χ ([K ])n

• If [ L : K ] ≥ n, then`χ ({ f : K [x]/( f ) ∼= L}) ≥
1
n`χ ([K ])n.
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Some questions

Question 10 Is there a combinatorially transparent condition equivalent

to K s(M) 6= 0?

Question 11 Is ThLring(K0(G)) an invariant of ThL(+,0)(G) for G an

abelian group?

Question 12 Are there transparent (though non-trivial) conditions on dim

which imply simplicity?
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