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Differential fields

Definition 1 A derivation ∂ on a field K is a function ∂ : K → K

satisfying ∂(x+ y) = ∂(x) + ∂(y) and ∂(xy) = x∂(y) + y∂(x)
universally.

The theory of fields of characteristic zero with n commuting
derivations, DF0,n, expressed in the language
L(+,×, 0, 1, ∂1, . . . , ∂n) has a model completion, DCF0,n, the
theory of differentially closed fields of characteristic zero with n
commuting derivations. [We can relax the commutation condition
somewhat to require only that the Lie algebra generated by the
distinguished derivations be finite dimensional.]
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Differential fields and stability

Let U |= DCF0,n be a differentially closed field.

• RM(U) = U(U) = ωn

• For K ≤ L ≤ U algebraically closed differential subfields and
a ∈ Un, a ↓K L⇐⇒ the ideal
I(a/L) := {P (x) ∈ L{x} | P (a) = 0} of differential polynomials
over L vanishing at a is generated by I(a/K).

• The canonical base of tp(a/K) is the field of definition of
I(a/K).

• If ∆ ≤ ⊕n
i=1U∂i is a subspace with dimU ∆ = d, then the field

C∆(U) := {x ∈ U | (∀δ ∈ ∆) δ(x) = 0} has Lascar rank ωn−d.
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Zilber dichotomy in differential fields

Theorem 1 (Hrushovski-Sokolović) Let (U,+,×, ∂) |= DCF0,1

be an ordinary differentially closed field of characteristic zero. If
X ⊆ Un is a strongly minimal definable set, then either X is locally
modular or there is a finite-to-finite correspondence between X and
C(U) = {x ∈ U | ∂(x) = 0}.

Proof: • Using some results on polynomial rings, show that,
possibly after removing finitely many points, taking the traces
of differential varieties on the Cartesian powers of X as closed
sets, X is a Zariski geometry.

• Apply the main dichotomy theorem of Zariski geometries and
the classification of interpretable fields in U.
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Direct proof via higher order derivatives

The interpretation of the field in non-locally modular Zariski
geometries is based on a combinatorial notion of “tangency.” In
DCF0,n we have natural geometric notions of tangency. The
Pillay-Ziegler proof of Theorem 1 is based on these geometric
notions of (higher-order) tangency. In addition, the Pillay-Ziegler
proof yields much finer information about finite rank types in
differentially closed fields.
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Algebraic jets

Definition 2 If X is an algebraic variety over the field K,
a ∈ X(K) is a K-rational point, and m ∈ N is a natural number,
then the mth jet space to X at a is
Jm(X)a(K) := Hom(mX,a/m

m+1
X,a ,K).

Note: The first jet space is none other than the tangent space.
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Properties of jet spaces

• There is a map of algebraic varieties πm : Jm(X) → X so that
for any a ∈ X(K) one may naturally identify π−1

m {a} with
Jm(X)a(K). So, each Jm(X)a is an algebraic group definable
from a and a field of definition for X.

• The jet space construction gives a contravariant functor.

• If X,Y ⊆ Z are irreducible varieties and a ∈ X(K) ∩ Y (K) is a
common point, then X = Y ⇐⇒ Jm(X)a = Jm(Y )a ≤ Jm(Z)a

for every m. (Proof: WMA these varieties are affine. If
X 6= Y , then there is some f ∈ I(X) \ I(Y ) or vice versa. By
Noetherianity, there is some m for which f /∈ mm+1

Y,a . There
would then be some ψ ∈ Jm(Y )a with ψ(f + mm+1

Z,a ) 6= 0, but
ϕ(f) = 0 for every ϕ ∈ Jm(X)a.)
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Algebraic arcs, interpreting nonreduced rings in
fields

Let K be an algebraically closed field.

For each natural number m one may regard the affine line over
K[ε]/(εm+1) as a variety over K via the correspondence
〈x0, . . . , xm〉 ↔

∑m
i=0 xiε

i.

If X = V (f1, . . . , f`) ⊆ At is an affine scheme over K[ε]/(εm+1) one
may find a variety Rm(X) over K whose K-points correspond to
the K[ε]/(εm+1)-points of X. As before, express the each variable
xi as xi =

∑m
j=0 xi,jε

j . With respect to this substitution, one
expands fs =

∑
fs,uε

u where each fs,u is a polynomial in {xi,j}.
Then, Rm(X) = V ({fs,u}).
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Algebraic arcs, definitions

The mth arc bundle of the algebraic variety X, Am(X), is just
Rm(Xk[ε]/(εm+1)) where Xk[ε]/(εm+1) is X regarded as a scheme over
K[ε]/(εm+1) via base change.

More formally, Am(X) represents the functor from the category of
K-algebras to the category of sets given by R 7→ X(R[ε]/(εm+1)).
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Algebraic arc spaces

If ` ≥ m, then the quotient map R[ε]/(ε`) → R[ε]/(εm) corresponds
to a natural transformation π`,m : A` → Am.

In the case of m = 0, we see that A0(X) = X. We write π` for π`,0.
For a ∈ X(K) we define the mth arc space of X at a to be
Am(X)a(K) := π−1

m {a}.
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Analyzing algebraic arcs in terms of tangents

The arc spaces are not groups in general, but for any ` and
ã ∈ A`X(K), if a = π(ã) is a smooth point of X, then
π−1

`+1,`{ã} ∼= TaX. Moreover, this identification is functorial.
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Arcs determine the variety

Proposition 3 If X,Y ⊆ Z are irreducible varieties over the
algebraically closed field K (of characteristic zero) and
a ∈ X(K) ∩ Y (K) is a common point, then X = Y if and only if
Am(X)a = Am(Y )a ⊆ Am(Z)a for every m.

Proof:

• If (∀m)AmXa = AmYa, then

{ã ∈ X(K[[ε]]) | π∞(ã) = a} = {ã ∈ Y (K[[ε]]) | π∞(ã) = a}

• Without loss of generality, Z = A` and there is some
f ∈ I(Y ) \ I(X).
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Proof, continued

• Let L := K(X). Extend the map k[x1, . . . , x`]/IX → k given
by x 7→ a to a place on L with corresponding valuation v.
Extend v to ṽ on Lalg. Note that (Lalg, ṽ) satisfies the
first-order property There is an integral point b ∈ X(OLalg,ṽ)
which specializes to a and has f(b) 6= 0.

• By Robinson’s QE theorem, (Lalg, ṽ) ≡K (
⋃

`≥1K((ε
1
` )), ordε).

• So, there is some b ∈ X(
⋃

`≥1K[[ε
1
` ]]) specializing to a and

having f(b) 6= 0.

• As K[[ε
1
` ]] ∼=K K[[ε]] we may take ` = 1, contradicting our first

observation.

13

Differential prolongation spaces

If (U, ∂1, . . . , ∂n) is a differential field and ` a natural number, we
define ∇` : U → UN(`,n) by ∇`(x) := 〈∂α1

1 · · · ∂αn
n (x)〉|α|≤`.

Definition 4 If X ⊆ Um is a subset of the mth Cartesian power of
U, then the `th prolongation space of X, τ`X, is the Zariski closure
of the set {〈∇`(a1), . . . ,∇`(am)〉 | 〈a1, . . . , an〉 ∈ X}.

In the case that X is an algebraic variety defined over the constants
and n = m = 1, then τ1X is the Zariski tangent bundle of X.
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Differential dimension

Definition 5 If X ⊆ Um is a differential variety, then its
dimension function ωX : N → N is defined by ωX(`) := dim τ`X.

Theorem 6 (Kolchin) To each differential variety X there is a
polynomial KX ∈ Q[x] for which KX(`) = ωX(`) for `� 0. The
degree of X, called the typical dimension of X, m(X) := degKX ,
and the leading coefficient of X, called the ∆-dimension, dim∆(X),
are definable invariants of the generic type of X.

If the m(X) = 0, we say that X has finite differential dimension.
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Algebraic D-varieties

For the time being we specialize to the case of one derivation.

Definition 7 An algebraic D-variety (X, s) over a differential field
K is an algebraic variety X given together with a section
s : X → τ1X of the first prolongation space.

If (X, s) is an algebraic D-variety over the differentially closed field
U, then (X, s)](U) := {x ∈ X(U) | ∇(x) = s(x)} is a differential
variety of finite differential dimension. Moreover, up to a set of
lower dimension, every differetial variety of finite dimension has
this form.
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Differential jet spaces

To an algebraic D-variety (X, s) and point a ∈ (X, s)](U), one may
associate a definable subgroup Jm(X, s)]

a of JmXa(U), what we call
the mth jet space of (X, s)] at a.

There are a number of equivalent ways to do this. We indicate two.
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D-modules

Let D := U〈∂〉 be the ring of linear differential operators over U
generated by ∂.

By definition, if M is a D-module, then the horizontal subspace is
the C(U)-vector space M∆ := {x ∈M | ∂ ·m = 0}. [If
dimU M <∞, then the natural map M∆ ⊗C(U) U →M is
surjective.]

If M is a D-module, then the U-dual M̌ of M has a natural
D-module structure given by (∂ · ϕ)(x) := ∂(ϕ(x))− ϕ(∂ · x).
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Jet spaces via D-modules

The ideal mX,a is a D-module via ∂ · f := f∂ + df · s.

This action gives the space V := mX,a/m
m+1
X,a a D-module structure.

Set Jm(X, s)]
a := (V̌ )∆.
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Jet spaces via D-variety structure on JmXa

There is a natural comparison map ϕ : Jτ1X → τ1JX. Take
Jm(X, s)]

a := (Jm(X)a, ϕ ◦ Jm(s))].
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Key property of Jm(X, s)]

Theorem 8 If (Z, s) is an algebraic D-variety,
(X, s � X), (Y, s � Y ) ⊆ (Z, s) are irreducible sub D-varieties, and
a ∈ (X, s)](U) ∩ (Y, s)](U) is a common point, then
X = Y ⇔ (∀m) Jm(X, s)]

a = Jm(Y, s)]
a.
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Differential jet spaces in general

One may adapt the definitions of jet spaces of algebraic D-varieties
to general differential varieties, but we do not know whether the
adapted spaces determine the differential variety.

We do know that their dimensions can be wrong.

22



Differential arc spaces

Definition 9 If X is a differential variety over the differential field
(K,+,×, ∂1, . . . , ∂n) and m is natural number, then the mth arc
bundle of X is the differential variety AmX which represents the
set valued functor on the category of differential K-algebras given
by R 7→ X(R[ε]/(εm+1)) where R[ε]/(εm+1) is made into a
differential ring by defining ∂i(ε) = 0 for all i.

As before, there are maps π`+m,m : A`+m → Am and A0 is the
identity. For a ∈ X(K) we define AmXa := π−1

` {a}.
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Properties of the differential arcs

• The arc spaces AmXa are analyzable in terms of TaX,
Kolchin’s differential tangent space.

• If X,Y ⊆ Z are are irreducible differential varieties and
a ∈ X(K) ∩ Y (K) is a common smooth point, then X = Y if
and only if (∀m) Am(X)a = Am(Y )a.

• For a ∈ X sufficiently general, mKX = KAmXa .
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The canonical base over a realization

Theorem 10 Let U |= DCF0,n be a differentially closed field,
k ≤ U an algebraically closed differential subfield, and a and c tuples
from U. We suppose that c is (interdefinable with) the canonical
base of tp(a/k, c). Let X = V (I(a/k)) be the differential locus of a
over k. Then tp(c/k, a) is internal to Am(X)a for some m. If X
has finite differential dimension, then tp(c/k, a) is internal to C(U).
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Proof of Theorem 10

Proof: Let Y be the locus of a over k〈c〉. The canonical base, c, of
tp(a/k, c) is interdefinable with the canonical parameter of Y . As
Y is determined by its arc spaces at a, there is some m such that c
is interdefinable with the canonical parameter of Am(Y )a. As
Am(Y )a ⊆ Am(X)a, by stability, the set Am(Y )a is defined with
parameters from Am(X)a.

In the finite differential dimension case, we may work with jet
spaces instead.
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Regular types

Recall that (in a stable theory) a nonalgebraic stationary type
p ∈ S(A) is regular if p is orthogonal to every forking extension.

That is, if A ⊆ B, a, b |= p, a ↓A B and b 6↓A B, then a ↓B b.

If U(p) = ωβ , then p is regular. In particular, minimal types are
regular.
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Dichotomy theorem (and conjecture)

Theorem 11 Let p be a regular type in a differentially closed field
U. Either p is locally modular or there is a definable subgroup
G ≤ (U,+) of the additive group having a regular generic type g

which is nonorthogonal to p.

Conjecture 12 If p is a non-locally modular regular type in a
differentially closed field, then p is nonorthogonal to the generic
type of a definable field.
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Key technical lemma: From non-local
modularity to nonorthogonality to a large type

in a group

Let p be a regular type in a differentially closed field. We suppose
that p has minimal differential type in the sense that if q is a
regular type and q 6⊥ p, then the typical dimension of the locus of q
is at least that of p.

Lemma 13 If p is not locally modular, then there is a type q and a
definable subgroup G ≤ (U`,+) for which

• p 6⊥ q

• q(x) ` x ∈ G

• p, q and G all have the same typical dimension
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Sketch of a proof of Lemma 13

As p is not locally modular, we can find tuples of realizations a and
c of p and an algebraically closed k ≤ U for which c is the canonical
base of tp(a/k, c), r := tp(c/k, a) is regular and nonorthogonal to p,
wp(a/k) = 2, and wp(a/k, c) = 1.

Let X be the locus of a over k. Then, r is internal to Am(X)a for
some m. So, one finds a type q′ ` Am(X)`

a in which r is internal.

Using the analysis of Am(X)a in terms of Ta(X) and facts about
typical dimension, one recovers a type q satisfying the conclusion.
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Structure theorem for differential vector groups

By a differential vector group we mean a definable group G which
is definably isomorphic to a subgroup of U` for some `.

Theorem 14 Every differential vector group G admits a
composition series 0 = G0 < G1 < . . . < Gm = G for which the
successive subquotients Gi+1/Gi have regular generic types.

The key step in the proof is the observation that if H ≤ U`, then
via the natural identification of U` with its tangent space at the
origin, H is identified with its own tangent space.
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Questions

• When c = Cb(a/k, c) is tp(c/k, a) internal to the non-locally
modular regular types in general?

• Is there a definable subgroup G ≤ (U,+) of the additive group
having a regular generic type g and a quasiendomorphism of
positive g-weight but no definable field of quasiendomorphisms
of positive g-weight?

32


