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Abstract. Buium proved what he called the abc theorem for abelian varieties

over function fields in characteristic zero [3]. Using methods of algebraic model
theory we prove an analog of his theorem for commutative algebraic groups in

characteristic p.

In what follows, k is an algebraically closed field of characteristic p, C is a smooth
projective curve over k, and K = k(C) is the function field of C. Identify each point
x ∈ C(k) with its corresponding valuation vx := ordx on K.

The purpose of this paper is to demonstrate:
Theorem 0.1. Let A be an abelian variety over K. Let f : A → P1 be a rational
function. Let r be a positive integer, then there is a bound Br ∈ Z such that
for any P ∈ A(K) either there are some a ∈ A(Ksep) and Q ∈ A(K) such that
f(Q) ∈ {0,∞} and P = Q+ [pr]a or vx(f(P )) ≤ Br for any x ∈ C(k).

Theorem 0.1 is the characteristic p analog of Buium’s abc theorem [3]. Our proof
works for more general commutative algebraic groups and for distances computed
to subvarieties of codimension greater than one. More general statements are in
Section 1.

Our proof follows the general form of Buium’s proof. We construct uniformly
continuous homomorphisms from A(Ksep) to some unipotent group with kernel
[pr]A(Ksep) using differential algebra. The maps allow us to bound the distance
from points in A(K)\[pr]A(Ksep) to 0. We then use a general lemma on approxima-
tions to reduce the theorem to the case of bounding the distance to a point. These
estimates dovetail to give a proof of the theorem. Using Hrushovski’s Mordell-Lang
theorem [8] we can give qualitative estimates on the growth of Br with r in many
cases.

The results of this paper formed a chapter of my Ph. D. thesis [14] written
under the direction of E. Hrushovski whom I now thank for his advice. I thank B.
Mazur for his advice and for insisting that a more geometric presentation of these
arguments be given (though I admit that the argument is still not geometric). I
thank D. Abramovich and J. F. Voloch for their comments on an earlier version.

1. A More General Formulation

We give now a definition of the distance to a subvariety.
Definition 1.1. Let Y ⊆ An

K be a subvariety of affine space over K. Let P ∈
An(K). Let x ∈ C(k). Then the distance from P to Y is

dvx(P, Y ) := min{vx(f(P )) : f ∈ IY ∩ OK,vx [X1, . . . , Xn]}
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Let X be a quasi-compact variety over K. Let V := {Vi} be a finite affine cover
of X. Let ϕi : Vi ↪→ AM express the affine co-ordinates on Vi. Let Y ⊆ X be a
subvariety. If P ∈ X(K) and x ∈ C(k) then

dvx
(P, Y ) := min{dvx

(ϕi(P ), ϕi(Vi ∩ Y )) : P ∈ Vi(K)}
Remark 1.2. As presented, the distance to a subvariety depends on the choice of
an affine cover. We suppress this dependence in the notation, but it is still there.

Finally, we need the notion of an almost integral set of points.
Definition 1.3. Let Υ ⊆ C(k). A subset Σ ⊆ AN (K) of affine space over K is
said to be almost Υ-integral if {vx(σ) : σ ∈ Σ, x ∈ Υ} is bounded below.

If X is an abstract variety over K, then Σ ⊆ X(K) is said to be almost Υ-
integral if for some (equivalently, any) affine cover V = {Vi} of X relative to the
affine co-ordinates on Vi, Vi(K) ∩ Σ is almost Υ-integral for each i.

Now for the more general version of Theorem 0.1.
Theorem 1.4. Let T ⊆ C(k) be a finite set of closed points. Let U = C \ T . Let
G be a commutative algebraic group over K. Let Γ ⊆ G(K) be a finitely generated
subgroup. Assume that Γ is almost U(k)-integral. Let X ⊆ G be a subvariety. Let
r ∈ Z+. Then there is an integer Br such that for any P ∈ Γ either there is some
Q ∈ Γ ∩X and a ∈ G(Ksep) such that P = Q + [pr]a or dvx(P,X) ≤ Br for any
x ∈ U(k).

The statement of Theorem 1.4 implicitly involves a choice of a finite affine cover
of G.
Remark 1.5. We included the more general statement involving the proximity func-
tions not only to formally strengthen the theorem but because our proof – even for
the case of X a hypersurface – passes through the case of X of higher codimension.

We can give a more geometric statement of Theorem 1.4.
Theorem 1.6. Let U = C \ T where T is a finite set of closed points. Let G be
a smooth commutative quasi-projective group scheme over U . Let Γ ⊆ G(U) be
a finitely generated subgroup. Let η := SpecK ↪→ U denote the inclusion of the
generic point into U . Consider the sections of G over U as K-rational points of
Gη via ι : G(U) ↪→ Gη(K). Let X ⊆ G be a closed subscheme over U . Let r be
a positive integer. There is an integer Br such that for any P ∈ Γ either there is
some Q ∈ Γ with ι(Q) ∈ Xη(K) and a ∈ Gη(Ksep) such that ι(P ) = ι(Q) + [pr]a
or P /∈ Xx(OC,x/m

Br+1
x ) for all points x ∈ U(k).

We abused notation slightly in the above statement by denoting the image of P
in Xx(OC,x/m

Br+1
x ) by P as well. In this geometric context, Br may be regarded

as a bound on the order of contact of the curve P with X at x. Theorem 1.6 may
be regarded as an instance of Theorem 1.4 by taking an affine cover for G over U
and then lifting this cover to Gη to calculate the distances.
Remark 1.7. It is necessary to allow Br to grow with r. Consider for example the
case of G = Gm and X = 1. Then one has dvx([p]P,X) = p ·dvx(P,X). For general,
if X is the origin of G, then Br is O(prh) where h is the height of the formal group
of G.

If it should happen that the Zariski closure of X ∩ Γ is a finite union of cosets,
then the growth of Br is bounded in the same way as it is when X is just the
origin. Hrushovski’s Mordell-Lang theorem [8] ensures that this hypothesis is true
for a wide class of G and X. If X falls into this class, we will say that X is general
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with respect to k. We give a precise description of this class below, but the reader
is advised to regard the phrase X is general with respect to k as a synonym for the
Mordell-Lang conjecture is true in the case X. Roughly, a general variety has the
property that the only subvarieties which descend to k are cosets of groups.

Definition 1.8. Let k be an algebraically closed field of characteristic p. Let K/k
be an extension of fields. Let G be a commutative algebraic group over K and let
X ⊆ G be a subvariety. X is said to be general with respect to k if the following
condition holds.

Whenever H ⊆ G is a semi-abelian variety defined over Kalg, H0 is a semi-
abelian variety defined over k, X0 ⊆ H0 is an irreducible subvariety defined over k,
φ : H → H0 is a homomorphism, and a ∈ G, then (a + φ∗X0) ∩X ⊆ Y ⊆ Y ⊆ X
for some Y a coset of a group variety.

Example 1.9. If G is a simple abelian variety of sufficiently general moduli, then G
can have no positive dimensional image defined over k. In the case, every subvariety
of G will be general with respect to k.
Example 1.10. If X is itself a coset of a group, then X is general for in the definition
of general we may take Y = X.

With the definition of general in place, we can state a version of Theorem 1.4
with estimates on Br.

Theorem 1.11. Let G be a commutative algebraic group over K. Let X ⊆ G be a
general subvariety. Let T ⊆ C(k) be a finite set of points and let U = C \ T . Let
Γ ⊆ G(K) be a finitely generated almost U(k)-integral subgroup. Let h be the height
of the maximal semi-abelian quotient of G. There are constants C1, C2 ∈ Z+ such
that for any integer r if P ∈ Γ either there are Q ∈ Γ ∩ X and a ∈ [pr]G(Ksep)
with P = Q+ [pr]a or dvx

(P,X) < C1p
rh + C2 for any x ∈ U(k).

2. Valuation Estimates for Hasse-Schmidt Derivations

Our goal in this section is to construct differential operators on K which behave
well with respect to all the K/k-places.

Let R be a commutative ring. A stack of HS derivations on R is given by a
sequence of functions {∂n : R→ R}∞n=0 satisfying

• ∂0(x) = x
• ∂n(x+ y) = ∂n(x) + ∂n(y)
• ∂n(x · y) =

∑
i+j=n ∂i(x) · ∂j(y)

• ∂i ◦ ∂j(x) =
(
i+j

i

)
∂i+j(x)

Call a ring with a specified stack of HS derivations an HS-differential ring. The
functional equations for a stack of HS derivations ensure that the map R → R[[ε]]
defined by x 7→

∑∞
i=0 ∂i(x)εi is a ring homomorphism.

Remark 2.1. Iterativity is not included in the definition of HS derivations in [10].
Since we will have no use for non-iterative stacks of HS derivations, we have built
it into the definition so as to avoid repeating the word “iterative.”

On the field k(t) there is a natural choice a stack of HS derivations given by the
ring homomorphism σ : k(t) → k(t)[[ε]] determined by σ|k = idk and σ(t) = t + ε.
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Iterativity corresponds to the commutativity of

k(t)[[ε]] σ−−−−→ k(t)[[ε, η]]

σ

x x
k(t) σ−−−−→ k(t)[[ε+ η]]

which in our case comes down to t+ (ε+ η) = (t+ η) + ε.
Let a ∈ k. Then σ(t − a)m = ((t − a) + ε)m =

∑∞
j=0

(
m
j

)
(t − a)m−jεj so that

∂j(t− a)m =
(
m
j

)
(t− a)m−j .

Observe that Fix(σ) = k.
Lemma 2.2. Let k be an algebraically closed field. Let {∂n}∞n=0 be the stack of HS
derivations on k(t) given by t 7→ t + ε. For any f ∈ k(t) and x ∈ P1(k) one has
vx(∂nf) ≥ vx(f)− n.

� We reduce the question to consider only f ∈ k[t].
Claim 2.3. If this lemma is valid for f and g, then it is also valid for fg.

z

v(∂n(fg)) = v(
∑

i+j=n

∂i(f)∂j(g))

≥ min
i+j=n

{v(∂i(f)) + v(∂j(g))}

≥ min
i+j=n

{(v(f)− i) + (v(g)− j)}

= v(fg)− n
z

Claim 2.4. If the lemma is valid for f 6= 0, then it is also valid for 1
f .

z We calculate

0 = ∂n(1)

= ∂n(f · 1
f

)

= f∂n(
1
f

) +
n∑

i=1

∂i(f)∂n−i(
1
f

)

We proceed with the proof of the claim by induction on n. When n = 0 the claim
is trivial. In general,

v(∂n(
1
f

)) = v(
n∑

i=1

∂if

f
∂n−i(

1
f

))

≥ min
1≤i≤n

{v(
∂if

f
) + v(∂n−i(

1
f

))}

≥ min
1≤i≤n

{−i+ [v(
1
f

)− (n− i)]}

= v(
1
f

)− n
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z

By the two claims it suffices to consider f ∈ k[t]. When f = 0, the lemma is
obvious so we take f 6= 0.

If x ∈ A1(k), then we may expand f as f =
∑

i≥N fi(t− x)i where fN 6= 0 and
each fi ∈ k. Then by the k-linearity of ∂n, we compute ∂n(f) =

∑
i≥N

(
i
n

)
fi(t −

x)i−n which visibly has vx valuation at least N −n = vx(f)−n. When considering
the place at ∞ given by v∞(f) = −ord(f) observe that each ∂n actually decreases
the order so that v∞(∂nf) ≥ v(f) ≥ v(f)− n. �

Lemma 2.5. Let (K, v) be a discretely valued field. Let {∂n}∞n=0 be a stack of HS
derivations on K satisfying inf{v(∂nx)− v(x) : x ∈ K×} = Bn > −∞. Then there
is a unique extension of the stack of HS derivations to completion Kv also satisfying
inf{v(∂nx)− v(x) : x ∈ K×

v } = Bn.

� The hypothesis on ∂n implies that it is a continuous function on K. Thus, there
is a unique extension of ∂n to a continuous function on the completion Kv. Since
Kv is a topological ring, each of the following functions is continuous.

Z(x) := ∂0(x)− x
An(x, y) := ∂n(x) + ∂n(y)− ∂n(x+ y)

Mn(x, y) := ∂n(xy)−
∑

i+j=n

∂i(x)∂j(y)

Ii,j(x) := ∂i ◦ ∂j(x)−
(
i+ j

i

)
∂i+j(x)

As {∂n}∞n=0 is a stack of HS derivations on K, each of these functions is identically
zero on K (or K ×K depending on the number of arguments). Since K is dense
in Kv, these functions must be identically zero on Kv as well. That is, {∂n}∞n=0 is
a stack of HS derivations on Kv.

The valuation v : Kv → Z ∪ {∞} is continuous and takes the value ∞ only at
zero so that the functions En(x) := v(∂nx)−v(x) are continuous as maps K× → Z.
By the hypotheses, E−1

n {N : N ≥ Bn} ⊇ K×. Again since K is dense in Kv, we
must have E−1

n {N : N ≥ Bn} = K×
v . �

Lemma 2.6. If (K, v) is a discretely valued field with an algebraically closed residue
field and {∂n}∞n=0 is a stack of HS derivations on K satisfying inf{v(∂nx)− v(x) :
x ∈ K×} = Bn > −∞, then for any finite unramified extension L/K, there is a
unique extension of the stack of HS derivations still satisfying inf{v(∂nx) − v(x) :
x ∈ K×} = Bn.

� Since the residue field of K is algebraically closed, L embeds over K into Kv

as a valued field. Since L is a finite separable extension of K, there is a unique
extension of the stack of HS derivations to L ([10] Theorem 9.23). Thus the stack
on L must agree with the restriction of the stack on Kv. By Lemma 2.5 the stated
inequalities are true on Kv and hence on L. �
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Lemma 2.7. Let (K, v) be a complete discretely valued field with a stack of HS
derivations satisfying inf{v(∂nx) − v(x) : x ∈ K×} = Bn > −∞. Let L/K be a
finite separable totally ramified extension of K. Then there is a unique extension
of the stack of HS derivations to L. This stack satisfies inf{v(∂nx) − v(x) : x ∈
L×} = B̃n > −∞
Remark 2.8. In general, B̃n 6= Bn. We will not need a precise calculation of B̃n,
but we note that it depends on Bn, [L : K], the valuation of the the different, and
linearly on n.

� That there is unique extension of the stack is Theorem 9.23 of [10]. Let e :=
[L : K]. Let π ∈ OL be a uniformizer. For each pair of integers (a, i) with
0 ≤ i < e and a ∈ N define Ea,i := v(∂aπ

i) − v(πi). Let n be given. Define
B(n) := max{Bj : 0 ≤ j ≤ n} and E(n) := max{Ea,i : 0 ≤ a ≤ n, 0 ≤ i < e}.
Claim 2.9. We may take Ẽn := B(n) + E(n).

z In the following calculation each xi ∈ K and at least one xi is not zero.

v(∂n(
n−1∑
i=0

xiπ
i)) = v(

n−1∑
i=0

∂n(xiπ
i))

≥ min
0≤i<n

{v(∂n(xiπ
i))}

= min
0≤i<n

{v(
∑

a+b=n

∂b(xi)∂a(πi))}

≥ min
0≤i<n,a+b=n

{v(xi)−Bb + v(πi)− Ea,i}

≥ min
0≤i<n

{v(xi) + v(πi)} − B̃n

= v(
n−1∑
i=0

xiπ
i)− B̃n

z

�

Lemma 2.10. Let k be an algebraically closed field. Let L be a finitely generated
extension of transcendence degree one. There is a stack of HS derivations {∂n}∞n=0

satisfying
• L(p) = ker ∂1 and
• there are constants Bn ∈ Z such that for any L/k-place v and x ∈ L× one

has v(∂nx) ≥ v(x)−Bn.

� Express L as a finite separable extension of k(t). Let {∂n}∞n=0 be the stack
of HS derivations on k(t) corresponding to t 7→ t + ε. By our calculation above,
ker ∂1 = k(tp). Let {∂n}∞n=0 also denote the unique extension of this stack to
L (which exists because the extension is separable). Since L/k(t) is separably
algebraic, the extension on the constant fields is also separably algebraic. Thus,
ker ∂1 = L(p).

As L is a separable extension of k(t), only finitely many places ramify. For any
unramified place v, Lemmas 2.2 and 2.6 show that v(∂nx) ≥ v(x)− n for x ∈ L×.
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Use Lemmas 2.2 and 2.7 to bound the difference v(∂nx) − v(x) for each of the
finitely many ramified valuations. �

From now on we will assume that K of Theorem 1.4 is equipped with such a
stack of HS derivations.

Lemma 2.11. Let K be a field with a stack of HS derivations {∂n}∞n=0. Let Λ be
an ordered abelian group. Let Σ be a set of Λ-valuations on K. Let {Bn}∞n=0 be
a sequence of elements of Λ with the property that for each x ∈ K× and valuation
v ∈ Σ one has v(∂nx) ≥ v(x)−Bn.

Let F (X1, . . . , Xn) be a polynomial over K in {∂jXi}M,n
j=0,i=1 with F (0, . . . , 0) =

0. Then there is some BF ∈ Λ such that for any tuple a := (a1, . . . , an) ∈ Kn and
valuation v ∈ Σ if v(a) := mini{v(ai)} ≥ 0, then v(F (a)) ≥ v(a)−BF .

� We proceed by induction on the construction of F . If F = ∂jXi, then the result
is already true by hypothesis with BF = Bj .

Suppose F = GH and the result is true for G and H. Let a and v be given with
v(a) ≥ 0.

v(F (a)) = v(G(a)) + v(H(a))
≥ v(a)−BG + v(a)−BH

≥ v(a)− (BG +BH)

So we may take BF = BG + BH . (N.B.: We used v(a) ≥ 0 to obtain the last
inequality.)

Suppose now F = G+H and the result is true for G and H. Again take a ∈ Kn

and v ∈ Σ with v(a) ≥ 0.

v(F (a)) = v(G(a) +H(a))
≥ min{v(G(a), v(H(a)}
≥ min{v(a)−BG, v(a)−BH}
= v(a)−max{BG, BH}

So we may take BF = max{BG, BH}. �

3. Manin Maps

In this section we will construct homomorphism ψr : G(Ksep)→ Ur(Ksep) which
in co-ordinates are polynomials in {∂mXi} and have kerψr = [pr]G(Ksep). It was
observed in the introduction to [8] that the existence of these maps follows from
elimination of quantifiers and imaginaries for the the theory of separably closed
fields of imperfection degree one in the differential language. Buium and Voloch
have constructed such maps for ordinary abelian varieties in the case of r = 1
using jet space and explicit p-descent methods [5]. We will construct these maps
using a strictly model theoretic argument and also by using jet spaces. Of course,
these methods come to the same thing. One could also construct these maps via
cohomology (fppf or crystalline) or by an analysis of the formal groups. We will
leave these points of view to another paper.
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3.1. Model Theoretic Construction of Manin Maps. All of what is said in
this section can be done with only the hypothesis 1 < [K : Kp] < ∞ by merely
changing the notation slightly, but to avoid the use of multi-indices and because we
only need the case of [K : Kp] = p, we will work only in this case.

Let t ∈ K \Kp. For any r, {ti}p
j−1

i=0 is a basis for K over Kpj

. In fact, for any
L/K a separable extension satisfying [L : Lp] = p this set is still a basis for L over
Lp. Define co-ordinate functions by the formula

x =
pj−1∑
i=0

ξj
i (x)pj

ti

The stability of the theory of separably closed fields was first proved by Wood and
Shelah [17]. Quantifier elimination in the language with the co-ordinate functions
was proved by Delon [7]. Elimination of imaginaries was proved by Messmer [11].
See [12] for a more complete discussion of the model theory of separably closed
fields. As noted in the introduction to [8], one can deduce the existence of the
Manin maps from these model theoretic properties of separably closed fields.

Lemma 3.1. Let G be a commutative algebraic group over L a separably closed
field with [L : Lp] = p and fixed a p-basis given by t ∈ L \ Lp. For any positive
integer r, there are a unipotent algebraic group Hr and a group homomorphism
ψr : G(L) → Hr(L) where ψr is given piecewise as a rational function in the ξ
co-ordinate functions such that kerψr = [pr]G(L).

� Without loss of generality, we may assume G is connected. Working in co-
ordinates, we may take G to be a definable (in the field language) group. [pr]G(L)
is definable by the formula x ∈ [pr]G ⇐⇒ (∃y ∈ G) [pr]y = x. By elimination
of imaginaries, there is a definable function ψ : G(L) → Lm for some m such that
the fibres of ψ are the cosets of [pr]G(L). By elimination of quantifiers, ψ may
be given piecewise as a rational function in the ξ co-ordinate functions. By the
Weil-Hrushovski group chunk theorem [2], the image of ψ embeds into a definable
group H such that the generic type of G(L) maps to the generic type of H. By [11],
there is an embedding φ : H → W of H into an algebraic group. Again, φ may
be given by rational functions in the ξ functions. Replacing W with the Zariski
closure of the image of φ, we may assume that that the generic type of H maps to
the field theoretic generic type of W . In the statement of the theorem, ψr = φ ◦ ψ
and Hr = W . Since the exponent of G(K)/[pr]G(K) is ≤ pr, the same is true of
W . This implies that W is unipotent. �

3.2. Jet Space Construction of Manin Maps. We now change the language
slightly so that this map may be understood as a differential rational map. We
choose an iterative stack of Hasse derivations having the property that ker ∂1 =
K(p). To be explicit, Let t ∈ K \ K(p) and take the stack determined by the
equations ∂nt

m =
(
m
n

)
tm−n. Since ∂n is linear over K(pdlogp(n)+1e), these equations

do fully determine the stack of HS derivations and also show how to calculate the
functions ∂n(x) in terms of the functions ξj

i (x). If t is fixed as a parameter, then
one can calculate the ξ-functions in terms of the HS derivations as well.
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It is shown in [13] that the theory of Ksep given with the stack of derivations
(but without necessarily fixing t) still admits quantifier elimination and elimination
of imaginaries.

For any scheme over a ring R with a stack of HS derivations we can produce a
projective system of jet scheme ∇rX. Let ϕ : R → R[[ε]] be the map given by the
HS derivations. Denote by ϕn the composite map

R
ϕ−−−−→ R[[ε]] −−−−→ R[[ε]]/(εn+1) = R[ε]/(εn+1)

Define Xn by the following Cartesian square.

X ←−−−− Xny y
SpecR

ϕ∗
n←−−−− SpecR[ε]/(εn+1)

Define ∇nX to be the Weil restriction of Xn from R[ε]/(εn+1) to R. ∇nX is known
to be a scheme when X is quasi-projective over R (see Theorem 4 of Section 7.6
of [1]).

Let us now use the language of jet schemes to re-interpret the construction of
the Manin maps.

We use the model theoretic results at only one point.

Lemma 3.2. Let K be a separably closed field of imperfection degree one. Let
{∂n}∞n=0 be a stack of HS derivations on K with ker ∂1 = K(p). Let G be a com-
mutative algebraic group over K. For any r ∈ N there is some Nr ∈ N and a
constructible set Yr ⊆ ∇Nr

G such that [pr]G(K) = ∇−1
Nr

Yr(K).

� Theorem 3.12 of [13] shows that the theory of K in the differential language
admits elimination of quantifiers. This implies that the solution set to the formula
φ(x) = dx ∈ G(K)&(∃y ∈ G(K))[pr]y = xe is equivalent to a quantifier-free formula
in x. Such formulas correspond to Boolean combinations of differential equations.
A differential equation is simply an algebraic equation on ∇N (x) for N � 0. Yr is
the constructible subset of ∇NX describing these equations. �

Let us fix some notation. If f : X → Y is a morphism of varieties over a field
L, then f∗X will denote the image of X in Y computed over Lalg. In general, f∗X
need not be closed in Y , but in case X and Y are both group varieties and f is a
homomorphism, then f∗X is itself a closed subgroup variety of Y .

Proposition 3.3. Let K be a separably closed field with [K : K(p)] = p. Let
{∂n}∞n=0 be a stack of HS derivations on K with ker ∂1 = K(p). Let G be a com-
mutative algebraic group over K. Let r ∈ N. Then there is a unipotent group Wr

and a function ψr : G(K)→Wr(K) which is locally a HS-differential-polynomial –
in fact, ψr is of the form φr ◦ ∇Nr

for φr : ∇Nr
X → Wr a regular function – such

that kerψr = [pr]G(K).

� Before proceeding, we need a little more information about Yr.

Claim 3.4. Yr in Lemma 3.2 may be taken to be a group variety. In fact, we may
take Yr = [pr]∗∇NrG.
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z Any Zariski closed subvariety of Yr containing the image of [pr]G(K) under
∇Nr

will work. So we might as well take the Zariski closure of this image. By
the very definition of the jet space, ∇Nr

(G(K)) is Zariski dense in ∇Nr
G. Hence,

[pr]◦∇Nr
(G(K)) = ∇Nr

([pr]G(K)) is Zariski dense in the algebraic group [pr]∗∇Nr
G.

z

Let Wr be the quotient∇Nr
G/[pr]∗∇Nr

G and let φr : ∇Nr
G→Wr be the quotient

map. The map ψr is then φr ◦ ∇Nr
. Since Wr(Ksep) has exponent at most pr, it

must be unipotent. �

4. Uniformities in the Function Field Mordell-Lang Conjecture

We will need to make concrete some of the uniformities inherent in Hrushovski’s
Theorem [8]. Let us first restate the main theorem of [8].
Theorem 4.1 (Hrushovski). Let K be a separably closed field of characteristic p.
Assume the 1 < [K : K(p)] < ∞. Let G be a semi-abelian variety over K. Let L
be a separable separably closed extension of K with the property that L = L(p)K
and [L : L(p)] = [K : K(p)]. Define [p∞]G(L) :=

⋂∞
n=1[pn]G(L). Let X ⊆ G be a

subvariety of G defined over L. Assume that X is general relative to
⋂∞

n=1 L
(pn).

Then there finitely many group subvarieties G1, . . . , Gn of G and points a1, . . . , an ∈
G(L) such that X ∩ [p∞]G(L) = (

⋃n
i=1 ai +Gi) ∩ [p∞]G(L).

We observe that one may replace “semi-abelian variety” by “commutative alge-
braic group” in the hypotheses on G in Hrushovski’s theorem since for any com-
mutative algebraic group G the algebraic group [pr]∗G is a semi-abelian variety for
r � 0.

In the next proposition we will use the compactness theorem of first order logic
to re-interpret the above statement to give a uniformity result over K.
Proposition 4.2. Let K be a separably closed field of characteristic p with 1 <
[K : K(p)] < ∞. Let k = ∩Kpn

. Let G be a commutative algebraic group over K.
Let X ⊆ G be a subvariety of G defined over some L a separably closed separable
extension of K having the same p-basis. Assume that X is general with respect
to

⋂∞
n=0 L

(pn). Then there is a finite set Ξ of semi-abelian subvarieties of G and
integers N and M such that for any point a ∈ G(L)

(X + a) ∩ [pN ]G(L) =
m⋃

i=1

(ai +Hi) ∩ [pN ]G(L)

with 0 ≤ m ≤M , Hi ∈ Ξ, and ai ∈ G(L).

� If this proposition were false, then for each natural number N and finite set of
semi-abelian subvarieties Ξ = {G1, . . . , Gn} of G (possibly listed with multiplicity)
defined over K, it would be consistent with the theory of L that

(∃b)(∀a1, . . . , an)(X + b) ∩ [pN ]G 6= (
n⋃

i=1

ai +Gi) ∩ [pN ]G

By the compactness theorem, the following set of formulas has a model:
(1) the elementary diagram of L
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(2) for each natural number N and finite sequence of semi-abelian subvarieties
of G defined over K, G1, . . . , Gn, the formula

(∀a1, . . . , an ∈ G)(∃y ∈ G)(∃z ∈ G)[y = [pN ]z and (y − c ∈ X \
n⋃

i=1

ai +Gi

or y − c ∈ [
n⋃

i=1

ai +Gi) \X])]

Let M be such a model which is ℵ1-saturated and let c ∈ G(M) be the point
interpreting the formal symbol c.
Claim 4.3. (1) M is a separable separably closed extension of K with M =

M (p)K and [M : M (p)] = [M : M (p)].
(2) There is no finite sequence G1, . . . , Gn of semi-abelian subvarieties of G

defined over K and points a1, . . . , an ∈ G(M) such that c+X∩[p∞]G(M) =
(
⋃n

i=1 ai +Gi) ∩ [p∞]G(M).

z

(1) Since M is a model of the elementary diagram of L, the extension M/L is
elementary and hence M/K is elementary. The property of being separably
closed is first-order so M is separably closed. The other property may be
expressed by fixing a basis B for K over K(p) and insisting that B also be
a basis for M over M (p).

(2) Suppose that G1, . . . , Gn are semi-abelian subvarieties of G defined over K
and a1, . . . , an ∈ G(M) such that (X + c) ∩ [p∞]G(M) = (

⋃m
i=1 ai +Gi) ∩

[p∞]G(M). Since M is ℵ1-saturated, for N sufficiently large we must have
(X+c)∩ [pN ]G(M) = (

⋃m
i=1 ai +Gi)∩ [pN ]G(M). This violates a condition

on c.
z

Since every semi-abelian subvariety G is defined over the separable closure of
the field of definition of G, Hrushovski’s theorem implies that in fact (X + c) ∩
[p∞]G(M) =

⋃m
i=1(ai +Gi) ∩ [p∞]G(M) for some ai ∈ G(M) and Gi semi-abelian

subvarieties defined over K. This gives the contradiction. �

5. Main Theorem

For the rest of this paper we revert to the notation of Theorem 1.4. Recall that
we equipped K with a stack of HS derivations via Lemma 2.10.
Lemma 5.1. Let a ∈ G(K). Let r ∈ Z+. Then there is a bound Br such that for
any P ∈ Γ \ (a+ [pr]G(Ksep)) and any x ∈ C(k) one has dvx

(P, a) ≤ Br}.

� By replacing the group operation on G with +a defined by Q+aR := Q+R−a,
we may assume that a = 0.

Let ψr : G(K) → Ur(K) be the map of Proposition 3.1 with kernel G(K) ∩
[pr]G(Ksep). The underlying variety of Ur is an affine space. Let τ : Ur → Ur be
the translation (with respect to the usual additive group structure on affine space)
which takes ψr(0) to the origin. On any particular affine open Vi in the fixed cover
G containing 0, we may translate by some ρ so that in co-ordinates 0 corresponds
to the origin. Set φr,i := τ ◦ ψr ◦ ρi.
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By our hypothesis on Γ, Γ/(Γ ∩ [pr]G(Ksep)) is finite. Thus φr,i(Γ) is a finite
set.

On the affine patch Vi, let ϑi : Vi → AN give the affine co-ordinates.
For any particular b ∈ An(K) \ {(0, . . . , 0)}, there is a constant C such that

−C ≤ vx(b) ≤ C for x ∈ U(k). Let C be the maximum over these constants for
the non-zero elements of φr,i(Γ). By Lemma 2.11, for P ∈ V (K) \ [pr]G(Ksep) and
x ∈ U(k) either vx(ϑi(P )) < 0 or we have C ≥ vx(φr,i(P )) ≥ vx(P ) − Bφr,i . Let
Br := maxiBr,i. The bound is then max{C +Br, 0}. �

Lemma 5.2. Let H ⊆ G be an algebraic subgroup. Let a ∈ G(K). Let r ∈ Z+.
Then there is a bound Br such that for any x ∈ C(k) and any P ∈ Γ\ [(a+H(K))+
[pr]G(Ksep)], one has dvx

(P, a+H) ≤ Br.

� Apply Lemma 5.1 to the algebraic group G/H. �

The next Lemma appeared as Proposition 6.3 in [8] for the case of a single
valuation. A more general version of this Lemma appears as Proposition 4.2.3
in [14].
Lemma 5.3. Let Y,Z ⊆ An

K be subvarieties of affine n-space over K. Let Ξ ⊆
An

K be defined by differential equations. Assume that for any HS-differential field
extension L of K that Y (L) ∩ Ξ(L) = Z(L) ∩ Ξ(L). Then there is a constant
m ∈ N such that for any point P ∈ Ξ(K) and any x ∈ U(k) if vx(P ) ≥ 0 then
dvx(P, Y ) ≤ n · (dvx(P,Z) + 1).

�
If the lemma were false, then for each n ∈ N we could find a point x ∈ U(k) cor-

responding to a valuation vn := vx a point Pn ∈ Ξ(OK,vn) such that dvn(Pn, Y ) >
n · (dvn(Pn, Z) + 1).
Let (K,v,ΓΓΓ) be a non-principal ultraproduct

∏
/F (K, vn,Z).

Let P be the image of (Pn) in OK.
Let ξ := dv(P, Y ) + 1.
Let p := {x ∈ R : (∀n ∈ Z+) v(x) > n · ξ}.
Claim 5.4. p is prime.

z Let x, y ∈ OK \ p. We have v(x) ≤ n · ξ and v(y) ≤ m · ξ for some m,n ∈ Z+.
Thus, v(xy) ≤ (n+m)ξ so that xy /∈ p. z

Claim 5.5. p is an HS differential ideal.

z Let x ∈ p. Let n ∈ Z+. For any N , by Lemma 2.10 and  Los’ Lemma, v(∂Nx) ≥
(n+N)ξ −BN ≥ nξ so that ∂Nx ∈ p as well. z

The localization of OK at p is OK,p = {x ∈ K : (∃n ∈ Z) v(x) > nξ}. By
Lemma 2.10, OK,p is a sub-HS-differential-ring of K. Since for each z ∈ K× we
have that {vx(y) : x ∈ U(k)} is bounded in Z, we have that K× ↪→ O×K,p via
the diagonal map so that composing with the quotient map we obtain a map of
HS-differential fields K → L := OK,p/p.

Let P continue to denote its image in Ξ(L). By construction, P ∈ (Z ∩ Ξ)(L) \
(Y ∩ Ξ)(L). This is a contradiction. �
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Lemma 5.6. If X is a quasi-compact variety over K, Y,Z ⊆ X are subvarieties,
Ξ ⊆ X(K) is a subset defined Zariski-locally by differential equations, and Σ ⊆
X(K) is an almost U(k)-integral subset, then there is an integer n such that for
any P ∈ Σ ∩ Ξ one has dvx

(P, Y ) ≤ n ·max{dvx
(P,Z), 1} for x ∈ U(k).

� After a change of co-ordinates, the hypotheses of Lemma 5.3 apply on each affine
patch. Since there are only finitely many patches involved, we may take a maximum
over the constants calculated on each chart. �

We can turn now to the proof of the main theorem.

� Let N be large enough so that each translate of [pN ]G(Ksep) meets X as does
a finite union of translates of group subvarieties. Let Ξ be the finite set of group
varieties of Proposition 4.2.

Since the statement is stronger for r larger, we may assume that r ≥ N .
Let Σ be a set of coset representatives for Γ ∩ [pN ]G(Ksep)) in Γ. For σ ∈ Σ let

Gσ
1 , . . . , G

σ
nσ
∈ Ξ and aσ

1 , . . . , a
σ
nσ
∈ G(Ksep) such that

X(Ksep) ∩ ([pN ]G(Ksep) + σ) = [
nσ⋃
i=1

aσ
i +Gσ

i (Ksep)] ∩ [pN ]G(Ksep)

Extend K so that each aσ
i +Gσ

i is defined over K. Since this extension is finite
separable, the distance estimates calculated with respect to the extension field imply
such estimates for the original K.

Since #Γ/(Γ ∩ [pN ]G(Ksep)) is finite, it suffices to show for each σ ∈ Σ that
there is some Cσ

r ∈ N such that for any x ∈ U(k) and any P ∈ [([pN ]G(Ksep) ∩
Γ) + σ] \ [(X(K) ∩ Γ) + [pr]G(Ksep)] one has dvx

(P,X) ≤ Cσ
r . We can then set

Cr = maxσ∈Σ C
σ
r .

By Lemma 5.6, for P ∈ Γ ∩ ([pN ]G(Ksep) + σ), the distance to X is uniformly
(in P and in vx) comparable to the distance to

⋃nσ

i=1 a
σ
i +Gσ

i .
It suffices to bound the distance to aσ

i +Gσ
i .

By Lemma 5.2, for P ∈ Γ \ [aσ
i + Gi(K) + [pr]G(Ksep)] dvx(P, aσ

i + Gσ
i ) is

bounded independently of P and x.
Putting this all together, the result follows. �
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