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The problem to be solved
Let us write x = (x1, . . . , xn) and y = (y1, . . . , ym) for these tuples of
variables.

Given: Difference polynomials f1(x; y), . . . , fℓ(x; y).

Determine: for which b the system f1(x;b) = · · · = fℓ(x;b) = 0 is
consistent.

As an important special case, take m = 0 so that we are simply asking
for a method to determine the consistency of a system of difference
equations.
In the version we solve, we work with a single distinguished
endomorphism, so ordinary difference equations.
By determine we mean that an algorithm is sought. Our goal is to
produce a method which is, at least in principle, practically
implementable.
In the end, we address the weaker problem of producing a nontrivial
difference equation satisfied by b if the solvability of the system
implies that such must exist.
The meaning of consistent depends on the background theory.Thomas Scanlon (UC Berkeley) Elimination for difference equations 14 September 2018 2 / 21
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Some difference algebra
Difference equations (on functions) are usually expressed by asserting that
some equation holds between the function and some transforms of the
function by shifting the arguments.

For example, the Γ function satisfies the difference equation
Γ(x + 1) = xΓ(x).

We algebraize this by working with difference rings, (R ,σ), a commutative
rings R given together with a distinguished ring endomorphism σ : R → R .

We treat difference rings as structures in the language of difference rings,
L (+, ·,−, 0, 1,σ), and modulo the theory of difference rings, terms in this
language may be identified with difference polynomials, expressions of the
form P(x,σx, . . . ,σd(x)) where P is an ordinary polynomial.

Allow ourselves parameters from R , the difference polynomials with
coefficients from R in the variables x1, . . . , xn form a difference ring
R{x1, . . . , xn}σ. If we also allow σ−1 as a function symbol, we have the
inversive difference polynomials R{x1, . . . , xn}σ,σ−1 .
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Solving the problem in difference fields
If consistent means “has a solution in some difference field extension”, then
the known work around ACFA (essentially) solves the problem (though
improvements may be possible through better results in computational
difference algebra).

ACFA, the model companion of the theory of difference fields, is not
complete, but its completions are understood. Thus, on general
grounds, the consistency problem is decidable.
Related to this point, since ACFA does not admit quantifier
elimination in the language of difference rings, the formula
∃x

󰁙
fi (x, y) = 0 is not equivalent to a quantifier-free formula in

general, but the near quantifier elimination of [Chatzidakis-Hrushovski,
JLMS, 1999] or the Galois stratification formalism of [Tomasič,
Nagoya, 2016] the problem of describing the parameters for which the
equations are consistent may be resolved.
More importantly, from the geometric axiomatization of ACFA one
may produce algorithms to resolve these problems.
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Geometric axioms

Recall the geometric axiomatization of ACFA.
A difference field (K ,σ) is a model of ACFA if and only if

K is algebraically closed
σ : K → K is an automorphism
For any irreducible affine algebraic variety V and W ⊆ V × V σ a
closed subvariety for which both projections W → V and W → V σ

are dominant, then there is a point a ∈ V (K ) with (a,σ(a)) ∈ W (K ).
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A little algebraic geometry for the geometric axioms
We give the requisite definitions in terms of rational points in affine space;
those of you who are familiar with other formalisms for algebraic geometry
know how to adjust the statements appropriately.
Let K be an algebraically closed field.

By an algebraic variety X we will mean a subset of K n (for some n)
defined by the vanishing of some finite system of polynomial equations.
X is irreducible if it cannot be expressed as the union of two proper
subvarieties.
If X ⊆ K n+m and Y ⊆ K n are irreducible varieties, then we say that
projection π : K n+m → K n gives a dominant map from X to Y if
π(X ) ⊆ Y and Y \ π(X ) is contained in proper subvariety of Y .
Quantifier elimination for the theory of algebraically closed fields
implies that the image of an algebraic variety under coordinate
projections is finite Boolean combination of algebraic varieties.
It is a nontrivial theorem that irreducibility and dominance of a
projection are definable uniformly in parameters.
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Prolongation-Projection method (also called the
Decomposition-Elimination-Prolongation [DEP] method) –
Step 0

We are given difference polynomials f1(x), . . . , fℓ(x) and wish to determine
whether it is consistent that there be a solution in a difference field.

Step 0 (convert to order one): If, for example,
fi (x) = Fi (x,σ(x), . . . ,σk(x)) where Fi is an ordinary polynomial, we add
new variables xi ,j for 1 ≤ i ≤ n and 0 ≤ j < k , and work with the new
equations Fi (x0, x1, . . . , xk−1,σ(xk−1)) = 0 and σ(xj) = xj+1 for
0 ≤ j < k − 1. From now on, we assume that each equation takes the form
fi (x) = Fi (x,σ(x)) = 0 where Fi is an ordinary polynomial.
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DEP – main steps

Consider the algebraic variety W defined by
F1(x, x′) = · · · = Fℓ(x, x′) = 0. Decompose W into its irreducible
components W =

󰁖
Wi . There is a solution to our problem if and

only if for some i we can find a with (a,σ(a)) ∈ Wi (K ). We thus
reduce to the case that W is irreducible.
By quantifier elimination in ACF, we may compute V , the projection
of W to the x-space. Likewise, we may compute V ′, the projection of
W to the x′-space.
We consider the prolongation space V × V σ. If V ′ = V σ and
W ⊆ V × V σ, then from the geometric axioms we have a solution.
Otherwise, replace W with W ∩ ((V ′)σ

−1 × V σ) and repeat.
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DEP – history and complexity

DEP for algebraic difference equations is introduced to prove explicit
bounds for the Manin-Mumford conjecture in [Hrushovski, APAL,
2001]. An analogous technique for differential equations is used in
[Hrushovski-Pillay, IMRN, 2000] to prove explicit bounds in the
function field Mordell-Lang conjecture.
The number of steps in the procedure outlined grows doubly
exponentially in the dimension of the initial W . A more streamlined
approach (presented in the differential setting) avoiding some of the
implicit recursion with singly exponential bounds may be found in
[Binyamini, Compositio, 2017].
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Solving difference equations in sequence rings

In practice, solutions to difference equations are sought in sequences.

If R is any ring, then RN and RZ are difference rings with the distinguished
endomorphism taken to be the shift operator σ : (an) 󰀁→ (an+1). Neither of
these difference rings embeds into a difference field.

Moreover, there are natural systems of difference equations which are
inconsistent relative to the theory of difference fields but which may be
solved in sequences. For example, the sequence (0, 1, 0, 1, 0, 1, . . .) is a
solution to the system xσ(x) = 0 and x + σ(x) = 1.
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A model companion for difference rings?

We might try to emulate the solution to the problem for difference fields by
finding a model companion to the theory of difference rings (or, perhaps,
reduced commutative difference rings). However, it is shown in
[Hrushovski-Point, J. Algebra, 2007] that sequence rings KN and KZ with
K infinite, and, indeed, all commutative von Neumann regular
[(∀x)(∃z)x = x2z ] difference rings have undecidable theories.

For K a field of characteristic zero, if R = KN or KZ, then Z ⊆ R is
defined by x ∈ Z ⇐⇒

σ(x) = x and
(∃y)[σ(y) = y + 1
& y is not a unit
& (y − x) is not a unit ]
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An abstract difference Nullstellensatz

Despite the undecidability of sequence rings as difference rings, it is not
hard to establish an abstract Nullstellensatz for difference equations.
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hard to establish an abstract Nullstellensatz for difference equations.

Proposition
For all uncountable algebraically closed fields K and finite sets
S ⊆ K{x1, . . . , xn}σ, the following statements are equivalent:

1. S has a solution in KZ.
2. S has a solution in KN.
3. S has finite partial solutions of length ℓ for all ℓ ≫ 0.
4. The ideal [S ] := ({σj(P) | P ∈ S , j ∈ N}) ⊆ K{x1, . . . , xn}σ does not

contain 1.
5. The ideal [S ]∗ := ({σj(P) | P ∈ S , j ∈ Z}) ⊆ K{x1, . . . , xn}σ,σ−1 does

not contain 1.
6. S has a solution in some difference K -algebra.
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About the proof – where is uncountability used?

The only difficult step is to show 6. (S has a solution in some difference
K -algebra) implies 1. (S has a solution in KZ).

This is really done by noting that 6. and 5. (1 /∈ [S ]∗) are easily equivalent,
taking m ⊇ [S ]∗ a maximal ideal (but not necessarily a difference ideal!)
containing [S ]∗, and constructing a sequence solution from
K{x1, . . . , xn}σ,σ−1/m. One uses ℵ1-saturation of K to show that this
sequence may be realized by a sequence from K .

Question: Is uncountability an essential hypothesis?
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Reducing to an algebraic problem

For R a difference ring and S ⊆ R{x1, . . . , xn}σ, let
h := min{r ∈ N : S ⊆ R[σj(xi ) : 0 ≤ j ≤ r , 1 ≤ i ≤ n} be the order of
S . For N ∈ N, we set
[S ]N := ({σj(s) : s ∈ S , 0 ≤ j ≤ N}) ⊆ R[x,σ(x), . . . ,σh+r (x)].

From the difference Nullstellensatz, we see that inconsistency of a system
S ⊆ K{x}σ of difference equations is equivalent to the existence of some
N ∈ N with 1 ∈ [S ]N . If we knew a bound on N, then eventual consistency
would be axiomatizable and checking this condition would reduce to a
standard ideal membership problem in a polynomial ring.
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Elimination

Let R be any commutative ring and S ⊆ R[x; y] a set of polynomials in the
variables x = (x1, . . . , xn) and y = (y1, . . . , ym). By the elimination ideal of
S we mean (S) ∩ R[y].

Likewise, for R difference ring and S ⊆ R{x; y}σ a set of difference
polynomials. The difference elimination ideal of S is R{y}σ ∩ [S ].

The difference elimination ideal of S describes the Cohn closure of the set
defined by ∃y

󰁙
f ∈S f (x, y) = 0.
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Main theorem
Theorem
There is an explicitly computable function B of the complexity of finite sets
of difference equations (e.g. number of variables, orders, total degrees,
number of equations) so that for any difference field K and set
S ⊆ K{x, y}σ of difference equations, so that if the difference elimination
ideal of S is nontrivial, then so is the elimination ideal of [S ]B .

When m = 0 (i.e., when there are no y variables), by the
Nullstellensatz, this gives a first-order condition for the existence of
solutions to S in some sequence ring LN with L = Lalg extending K
and uncountable.
The function B grows very quickly for underdetermined systems, but
for practical elimination problems it tends to produce very small
numbers.
To ease notation, I will focus on the case where m = 0, but we should
remember that for the applied parameter identification problems, the
main point is to allow m to be large but the equations in x should be
balanced.Thomas Scanlon (UC Berkeley) Elimination for difference equations 14 September 2018 16 / 21
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Geometrizing the problem
Let us focus on the consistency problem. It turns out that a solution
to the elimination problem may be derived from this. For the sake of
exposition, we work with difference equations with constant
coefficients.
As in the case of difference equations over fields, at the cost of adding
more variables, we may reduce to the problem of dealing with order
one equations. So we have polynomials f1(x, x′), . . . , fℓ(x, x′) in 2N
variables and wish to know whether we can find sequences so that
fj(bn,bn+1) = 0 for 1 ≤ j ≤ ℓ and n ∈ N.
Let X be the algberaic variety defined by f1, . . . , fℓ, and π1 and π2 be
the projections to the first N (respectively, last N) coordinated
restricted to X . We are looking for sequences (an) with an ∈ X and
π2(an) = π1(an+1).
In the case of fields, the geometric axioms say that such a solution
exists just in case we eventually reduce to the situation that π1 and π2
are dominant to the same variety; for sequences it is much more
complicated.
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Trains

Given our difference equation (X ,π1,π2) a train of length ℓ ≤ ∞ is a
sequence (Yj)

ℓ
j=1 of irreducible subvarieties of X such that π2Yj = π1Yj+1

for all j .

The information of a solution is equivalent to that of an infinite train of
zero-dimensional varieites.

Our main technical result is to compute bounds so that if there is no
infinite train, then there is no train longer than our bound. Indeed, we can
arrange that if an infinite train exists, then it can be taken to be periodic of
bounded period.
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Axiomatizing solvability in KZ with K an arbitrary
algebraically closed field?

From the main technical result, we have another equivalent condition to
the solvability of a system of difference equations in some difference ring
extension: the associated geometric problem (X ,π1,π2) admits an
explicitly computable (skew-)periodic train (Yn)

∞
n=0 of explicitly bounded

(skew-)period k .

How hard can it be to produce a K -solution from this (skew-)periodic train?

To simplify the presentation, we take k = 1 and work with constant
coefficients. That is, Yn = Y1 for all n.

We start with a0 ∈ Y0(K ). To continue, we need to find a1 ∈ Y1(K ) with
π1(a1) = π2(a0). We know that π2(Y0) = π1(Y1). So, for almost any
choice of a0, we can find the a1. Adjust the first choice accordingly.
Continuing, we find that almost any finite sequence may be extended, but
the possible exceptional set is not under control.

Thomas Scanlon (UC Berkeley) Elimination for difference equations 14 September 2018 19 / 21



Axiomatizing solvability in KZ with K an arbitrary
algebraically closed field?

From the main technical result, we have another equivalent condition to
the solvability of a system of difference equations in some difference ring
extension: the associated geometric problem (X ,π1,π2) admits an
explicitly computable (skew-)periodic train (Yn)

∞
n=0 of explicitly bounded

(skew-)period k .

How hard can it be to produce a K -solution from this (skew-)periodic train?

To simplify the presentation, we take k = 1 and work with constant
coefficients. That is, Yn = Y1 for all n.

We start with a0 ∈ Y0(K ). To continue, we need to find a1 ∈ Y1(K ) with
π1(a1) = π2(a0). We know that π2(Y0) = π1(Y1). So, for almost any
choice of a0, we can find the a1. Adjust the first choice accordingly.
Continuing, we find that almost any finite sequence may be extended, but
the possible exceptional set is not under control.

Thomas Scanlon (UC Berkeley) Elimination for difference equations 14 September 2018 19 / 21



Axiomatizing solvability in KZ with K an arbitrary
algebraically closed field?

From the main technical result, we have another equivalent condition to
the solvability of a system of difference equations in some difference ring
extension: the associated geometric problem (X ,π1,π2) admits an
explicitly computable (skew-)periodic train (Yn)

∞
n=0 of explicitly bounded

(skew-)period k .

How hard can it be to produce a K -solution from this (skew-)periodic train?

To simplify the presentation, we take k = 1 and work with constant
coefficients. That is, Yn = Y1 for all n.

We start with a0 ∈ Y0(K ). To continue, we need to find a1 ∈ Y1(K ) with
π1(a1) = π2(a0). We know that π2(Y0) = π1(Y1). So, for almost any
choice of a0, we can find the a1. Adjust the first choice accordingly.
Continuing, we find that almost any finite sequence may be extended, but
the possible exceptional set is not under control.

Thomas Scanlon (UC Berkeley) Elimination for difference equations 14 September 2018 19 / 21



Axiomatizing solvability in KZ with K an arbitrary
algebraically closed field?

From the main technical result, we have another equivalent condition to
the solvability of a system of difference equations in some difference ring
extension: the associated geometric problem (X ,π1,π2) admits an
explicitly computable (skew-)periodic train (Yn)

∞
n=0 of explicitly bounded

(skew-)period k .

How hard can it be to produce a K -solution from this (skew-)periodic train?

To simplify the presentation, we take k = 1 and work with constant
coefficients. That is, Yn = Y1 for all n.

We start with a0 ∈ Y0(K ). To continue, we need to find a1 ∈ Y1(K ) with
π1(a1) = π2(a0). We know that π2(Y0) = π1(Y1). So, for almost any
choice of a0, we can find the a1. Adjust the first choice accordingly.
Continuing, we find that almost any finite sequence may be extended, but
the possible exceptional set is not under control.

Thomas Scanlon (UC Berkeley) Elimination for difference equations 14 September 2018 19 / 21



(Skew-)periodic points

Continuing with the same notation, if we could find a point a0 so that
σ(a0) ∈ Y1(K ) and π1(σ(a0)) = π2(a0), then we could produce a sequence
solution.

This might be impossible for our given (K ,σ). It may happen that σ acts
trivially on K , for instance, and that the equations x ∈ Y0 and
π1(x) = π2(x) are inconsistent.

However, in an existentially closed difference field, these solutions do exist.
Thus, from the limit theory of the Frobenius (that is, Hrushovski’s theorem
that if U is a nonprincipal ultrafilter on the set of prime powers, then the
difference field

󰁔
U Falg

q , x 󰀁→ xq) is existentially closed), it follows that
they may be found in a finite field with a power of the Frobenius, and a
specialization argument permits us to lift them to K .
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solution.

This might be impossible for our given (K ,σ). It may happen that σ acts
trivially on K , for instance, and that the equations x ∈ Y0 and
π1(x) = π2(x) are inconsistent.

However, in an existentially closed difference field, these solutions do exist.
Thus, from the limit theory of the Frobenius (that is, Hrushovski’s theorem
that if U is a nonprincipal ultrafilter on the set of prime powers, then the
difference field
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Concluding remarks and questions

In our application of Hrushovski’s theorem on the limit theory of the
Frobenius we make use of a weaker published theorem of [Varshavsky,
J. Alg. Geom., 2018] where all the data are defined over a finite field.
Is this weaker theorem enough to recover the result that ACFA is the
limit theory of the Frobenius?
There is still a gap between our positive result on the decidability of
consistency of difference equations with coefficients from a difference
field and the undecidability of the theory of sequence rings. Where is
the border between the class of coefficient rings for which the solution
to this problem may be axiomatized and those where it cannot? Here
we are deciding positive existential formulae. Is the full existential
theory decidable?
In the follow up work with Wei Li, we extend these methods to
difference-differential equations. The theoretical results are similar, but
the bounds we compute are much worse.
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