Math 250A, Fall 2001
Homework Assignment \#3
Problems due September 18, 2001
a. Let $p$ be a prime, $n$ a positive integer and $t$ an integer that is prime to $p$. Prove, without reference to group actions, that $\binom{p^{n} t}{p^{n}}$ is prime to $p$. More generally, for $1 \leq s \leq n$, prove that $\binom{p^{n} t}{p^{s}}$ is divisible by $p^{n-s}$ but not by $p^{n-s+1}$. [To do this problem, it might possibly be useful to know the following fact: Let $N$ be a positive integer, and let $S$ be the sum of the digits in the base $p$ expansion of $N$. Then $\frac{N-S}{p-1}$ is the exponent of the highest power of $p$ that divides $N$ !. If you use this fact, prove it before discussing the main problem.]
b. Suppose that $G$ is a group of order $p^{n} t$ and that $s$ is as above. Prove that $G$ has a subgroup of order $p^{s}$ by using Wielandt's method: Consider the action of $G$ on the set of all subsets of $G$ with $p^{s}$ elements and then argue as we did in class in the case $s=n$.
c. Let $G$ be a group of order $13^{2} \cdot 7=1183$. Show that $G$ has a unique subgroup $N$ of order 169. Describe Aut $N$ in case $N$ is cyclic, and also in case $N$ is not cyclic. Prove that $G$ is abelian if $N$ is cyclic, and solvable in any case. Are all groups of order 1183 abelian?

Problems from Lang, Chapter I: 20, 21, 22, 24, 25, 26, 28, 29,30 (I will try to do at least a couple of these in class before the assignment is due)

