Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in *complete sentences*. Take pain to explain what you are doing since your exam book is your only representative when you work is being graded.

(6 points) **1.** Suppose that $a \in \mathbb{Z}/37\mathbb{Z}$ is such that the values of a^2 , a^4 , a^8 , a^{16} and a^{32} are respectively 11, 10, 26, 10 and 26. Compute a^{36058} . Find the number of elements b in $\mathbb{Z}/37\mathbb{Z}$ that satisfy $b^{32} = a^{32}$.

Because $a^4 = a^{16}$, we know that $a^{12} = 1$. Hence $a^{36058} = a^{10} = a^2a^8 = 11 \cdot 26 = 27$. In the second question, the bs correspond to cs for which $c^{32} = 1$. To say that $c^{32} = 1$ is to say that $c^4 = 1$, since $c^{36} = 1$ by Fermat's Little Theorem. Let g be a generator, and write $c = g^i$ where i is an integer mod 36. The condition $c^4 = 1$ means that $4i \equiv 0 \mod 36$, i.e., that i is divisible by 9. The possible values of i mod 36 are then 0, 9, 18 and 27. There are four such values. For what it's worth, the possible values of b are 10, 14, 23 and 27 mod 37. Note: Many people ignored the second question in the problem. Is this because it was a stealth question somehow or because it was hard?

(5 points) 2. Consider the following sage transcript:

sage: p=1259

sage: g=Mod(1028,p)

sage: h=g^1238

sage: log(h,g)

609

Why is sage telling us that $\log(h, g)$ is 609, rather than 1238?

The log in question is the smallest power of g that's equal to h. Since $g^{609} = g^{1238}$, we can infer that $g^{629} = 1$. The order of g must be equal to 629 because otherwise it would be a proper divisor of 629 and then would certainly be less than 609. The only significant thing going on here is that g is not a generator (even though 'g' suggests 'generator'). Since h is a power of g, the discrete log is well defined, and 609 is its value.

(5 points) **3.** Using the equation $1 = 1634152 \cdot 358703966558 - 1162438012471 \cdot 504265$, find an integer x satisfying

$$x \equiv \begin{cases} 99 \mod 1634152\\ 123 \mod 1162438012471. \end{cases}$$

You do not need to simplify your answer.

Answer: $-99 \cdot 1162438012471 \cdot 504265 + 213 \cdot 1634152 \cdot 358703966558$. The value of this unpleasant expression is 14068243304608531683.

(7 points) **4.** Let p be the prime 10007 and let g be the primitive root 5 mod p. Imagine that we will be using the baby-step giant-step algorithm to find the discrete logarithm of a number $h \in \mathbf{Z}/p\mathbf{Z}$ with respect to g: we will compare baby steps $1, g, g^2, \ldots$ (the first list) with ratios $h, hg^{-n}, hg^{-2n}, \ldots$ (the second list). If we follow the procedure that was outlined in class, what value n will we choose and how long will each of the lists be? In the case $h = g^{456}$, for which i will g^i occur on both lists?

The value of n is $\lfloor \sqrt{p-1} \rfloor + 1 = 101$; note that the square root of p-1 is smaller than 101 because $101^2 = 10201$. When $h = g^{456}$, we divide 456 by n = 101, getting the quotient 4 and the remainder 52. This means that 456 = 4n + 52, so that $h = g^{4n+52} = g^{4n}g^{52}$. Thus $hg^{-4n} = g^{52}$, so that g^{52} , which is on the first list, also occurs as hg^{-4n} on the second list.

(8 points) 5. Let F be the field $\mathbf{F}_3[x]/(x^2-x-1)$. How many elements are in F? Let

$$a = x \bmod (x^2 - x - 1)$$

be the image of x in F. Show that $a^4 = -1$ and also that a is a primitive root in F (i.e., a generator of the multiplicative group F^*).

There are 9 elements in F; in general, there are p^n elements if we start with \mathbf{F}_p and use an irreducible polynomial of degree n. (We know that x^2-x-1 is irreducible in this case because we are told that the quotient ring $\mathbf{F}_3[x]/(x^2-x-1)$ is a field.) In F, we have $a^2=a+1$, so that $a^4=(a+1)^2=a^2-a+1$. (Note that 2=-1.) Thus $a^4=(a+1)-a+1=2=-1$, as required. The order of a is now clearly 8 because $a^8=1$ and $a^4\neq 1$. Thus a is a multiplicative generator (i.e., a primitive root).

(9 points) **6.** In the ring $\mathbf{F}_2[z]$ of polynomials over the field with two elements, let $f = z^4 + z^3 + z + 1$ and $g = z^4 + 1$. Use the extended Euclidean algorithm to find the gcd d of f and g and to write d in the form af + bg with $a, b \in \mathbf{F}_2[z]$.

We have

$$f = g + z^{3} + z$$

$$g = z \cdot (z^{3} + z) + (z^{2} + 1)$$

$$z^{3} + z = z(z^{2} + 1).$$

Hence the gcd of the two polynomials is $z^2 + 1$. Further,

$$z^{2} + 1 = g + z(z^{3} + z) = g + z(f + g) = (z + 1)g + zf.$$

Note, by the way that $g = (z+1)^4$ and that $z^2 + 1 = (z+1)^2$. Also, $f = (z+1)^4 + z(z+1)^2$.