
The symplectic group is obviously not compact. For orthogonal groups it was
easy to find a compact form: just take the orthogonal group of a positive definite
quadratic form. For symplectic groups we do not have this option as there is
essentially only one symplectic form. Instead we can use the following method of
constructing compact forms: take the intersection of the corresponding complex
group with the compact subgroup of unitary matrices. For example, if we do
this with the complex orthogonal group of matrices with AAt = I and intersect

it with the unitary matrices AA
t
= I we get the usual real orthogonal group.

In this case the intersection with the unitary group just happens to consist of
real matrices, but this does not happen in general. For the symplectic group we
get the compact group Sp2n(C) ∩ U2n(C). We should check that this is a real
form of the symplectic group, which means roughly that the Lie algebras of both
groups have the same complexification sp2n(C), and in particular has the right
dimension. We show that if V is any †-invariant complex subspace of Mk(C)
then the Hermitian matrices of V are a real form of V . This follows because
any matrix v ∈ V can be written as a sum of hermitian and skew hermitian
matrices v = (v + v†)/2 + (v − v†)/2, in the same way that a complex number
can be written as a sum of real and imaginary parts. (Of course this argument
really has nothing to do with matrices: it works for any antilinear involution †

of any complex vector space.) Now we need to check that the Lie algebra of the
complex symplectic group is †-invariant. This Lie algebra consists of matrices
a auch that aJ + JaT = 0; this is obviously closed under complex conjugation,
and is closed under taking transposes if we choose J so tthat J2 = 1.

For orthogonal groups we can find an index 2 subgroup because the determi-
nant can be positive or negative, and one might guess that one can do something
similar for symplectic groups. However for symplectic groups the determinant
is always 1:

Lemma 221 if B is a symplectic matrix preserving the non-degenerate alter-
nating form of A, so that BABt = A, then det(B) = 1.

Proof A non-degenerate alternating form on a 2n-dimensional vector space V
gives a 2-form ω in Λ2(V ) and ω∧· · ·∧ω is a non-degenerate 2n-form preserved
by B, So B has determinant 1, as the determinant is the amount by which a
matrix multiplies a nondegenerate 2n-form. �

For example, Riemannian manifolds, where the structure group is reduced to
the orthogonal group, can be non-orientable, but symplectic manifolds, where
the structure group is reduced to the symplectic group, are always orientable.

Definition 222 An alternating form can be represented by an alternating ma-
trix A. Since this is equivalent to the standard form J with diagonal blocks
(

0 1
−1 0

)

we can write the matrix as TJT t for some T . Any two matrices T differ
by a symplectic matrix that necessarily has determinant 1, so the determinant
of T depends only on A and is called the Pfaffian of the alternating matrix A.
(More generally, the Pfaffian is really a function of two alternating forms on a
vector space, given by the determinant of a map taking one to the other.)

The Pfaffian can also be given as follows: the highest degree part of

exp(
∑

Aijωi ∧ ωj) = Pf(A)ω1 ∧ · · · ∧ ω2n
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Exercise 223 If A is alternating and B is any matrix show that

Pf(BABt) = det(B)Pf(A)

det(A) = Pf(A)2

We can write the determinant as the square of an explicit polynomial in the
entries of A.

Lemma 224 If A is a skew symmetric matrix over a field of characteristic 0,
the Pfaffian of A is given by

ωn = 2nn!Pf(A)e1 ∧ · · · ∧ en

where ω =
∑

i,j aijei ∧ ej.

We can write this as

Pf(A) =
1

2nn!

∑

w∈S2n

ǫ(w)aw(1)w(2)aw(3)w(4) · · ·

and since each term on the right occurs 2nn! times, we get a definition of the
Pfaffian over any commutative ring by just summing over the permutations with
w(1) < w(3) < w(5) · · · , w(1) < w(2), w(3) < w(4), · · · .

Exercise 225 Find the Pfaffian of








0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0









Example 226 The orthogonal group acts on its Lie algebra, which is the vector
space of skew symmetric real matrices. We can ask about the invariants of
On(R) and its subgroup SOn(R) for this representation, in other words the
polynomials in the entries of A that are invariant under changing A to BAB−1

for B an orthogonal or special orthogonal matrix (so B−1 = Bt). By the formula
Pf(BABt) = det(B)Pf(A), we see that the Pfaffian is an invariant of the special
orthogonal group, but changes sign under reflections. In fact the invariants of
the special orthogonal group form a 2-dimensional module over the invariants
of the orthogonal group, with a basis given by 1 and the Pfaffian.

16.1 Perfect matchings and domino tilings

The Pfaffian turns up in several problems of statistical mechanics, where it can
sometimes be used to give exact solutions in 2 dimensions. As an example we
will use it to count the number of perfect matchings of a bipartite planar graph.
(Bipartite means that the vertices can be colored black and white such that the
two endpoints of any edge have different colors, or equivalently that all cycles
have even length.) The idea is to write this number as the Pfaffian of a matrix,
and then evaluate the determinant of the matrix by diagonalizing it.
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We can form the adjacency matrix of this graph with aij = 0, 1 counting the
number of edges from vertex ii to vertex j, and can see that the Pfaffian of this
adjacency matrix would b the number of bipartite matchings if it were not for
the signs in the Pfaffian. The idea is to cleverly change the signs of some of the
entries in the adjacency matrix to nullify the signs in the Pfaffian.

Order the vertices of the graph, and call a cycle odd or even depending on
whether as we go around the cycle we have an odd or even number of edges where
we go to a larger vertex. (This does not depend on which way we transverse
the cycle as the cycle has even length.)

Suppose we label each edge of the graph with a sign. Now we take the
adjacency matrix of the graph, and change signs of its entries as follows.

• First change the sign of aij so that it has the same sign as the correspond-
ing edge of the graph.

• Then make it antisymmetric by changing the sign of aij if i < j.

Lemma 227 Suppose that for every cycle the product of signs in the cycle of
length a is (−1)a/2+1 if the cycle is even and minus this if the cycle is odd. Then
the Pfaffian of the matrix above is (up to sign) the number of perfect matchings
of the graph.

Proof The non-zero terms of the expansion of the Pfaffian correspond to
perfect matchings. The problem is to check that any two terms have the same
sign.

Suppose that we have two perfect matchings. Color the edges of one red,
and the edges of the other blue. Then we get a collection of even length cycles,
whose edges alternate red and blue. (These are allowed to have one double edge
colored both red and blue.) We examine a single cycle v1v2 · · · v2k and check
that the sign of the term of the Pfaffian does not change if we switch from the
red to the blue edges. The sign of the red edges comes from:

• The sign of the permutation v1v2 · · · v2k.

• The number of pairs v2i−1v2i that are decreasing (using the order of the
vertices)

• The number of pairs v2i−1v2i whose edge has sign −1.

while the sign of the blue permutation comes from

• The sign of the permutation v2 · · · v2kv1.

• The number of pairs v2iv2i+1 that are decreasing (using the order of the
vertices)

• The number of pairs v2iv2i+1 whose edge has sign −1.

So we pick up a factor of −1 as the sign of a cycle of length 2n, and a factor of
−1 each time the vertices decrease as we go around the cycle, and a factor of
−1 for each edge of the cycle whose edge has sign −1. By assumption the signs
of the edges are chosen so that these signs cancel out over every cycle. �
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Exercise 228 If we have a planar bipartite graph then we can assign signs to
each edge so that the product of signs in a cycle of length a is (−1)a/2+1 if the
cycle is even and minus this if the cycle is odd. (By induction on the size of
the graph we can arrange that this is true for the cycles bounding faces of the
planar graph (remove an outer edge, add signs to the remainder of the graph,
then add a sign to the removed edge so that its face has the correct number
of signs). Then check that all cycles, not just those bounding faces, have the
correct parity of signs by induction on the number of faces inside the cycle.)

Example 229 We use this to count the number of domino tilings of a chess-
board, or more generally an m×n rectangle. The number of domino tilings of a
chessboard is the number of bipartite matchings of the graph formed by joining
all centers of squares to the centers of adjacent squares. We have to choose an
ordering of the vertices and signs for the edges satisfying the condition above.
We choose lexicographic ordering of vertices. Then every 1 by 1 square has 2
increases as we go around it, so needs an odd number of signs on its edges. We
can achieve this by putting signs on the horizontal edges of rows 2, 4, 6, . . .. We
let Qn be the n×n matrix with 1s just above the diagonal, −1 just below it, and
0s elsewhere. We let In be the n×n identity matrix. We let Fn be the diagonal
matrix whose entries alternate 1 and −1. Then the matrix whose Pfaffian we
want to evaluate is

Qn ⊗ Im + Fn ⊗Qm

Here Qn comes from the horizontal edges, Qm from the vertical edges, and Fn

comes from the fact that we twiddle the signs of the edges in even rows.
Now we find the determinant of this matrix by (almost) diagonalizing it.

First we diagonalize Qn by finding its eigenvectors. If (a1, a2, · · · ) is an eigen-
vector with eigenvalue λ, then −ak−1+ ak+1 = λak (with a0 = an+1 = 0). This
is a difference equation for ak with solution ak = zk1 − zk2 where zn+1

1 − z−n−1
2 =

an+1 = 0, z1z2 = −1, z1 + z2 = λ so z1 = e(2j+n+1)πi/2(n+1) for integers j. The
eigenvalue λ is z1 + z2 = 2i sin((2j + n+ 1)π/2(n+ 1)) = 2i cos(j/(n+ 1)).

If we replaced Fn by In we would be finished, because the vectors vi ⊗ vj
would be a set of eigenvectors for out matrix, where vi and vj run through
eigenvectors of the matrices Q. We now seem to run into a problem, because the
matrices Fn and Qn do not commute, so we cannot simultaneously diagonalize
them. However they are not too far from commuting: in fact FnQn = −QnFn.
This means that Fn switches the eigenspaces of Q with eigenvalues λ and −λ, so
(at least when λ is nonzero) we can find a basis of eigenvectors of Qn in which
Fn can be written with 2 by 2 blocks ( 0 1

1 0 ) down the diagonal.
What is really going on is that we have a representation of the algebra

generated by Qn, Qm, and Fn on a space of dimension mn, and the key point is
that this representation breaks up as a sum of small representations of dimension
at most 2.

So the mn by mn matrix can be written with mn/2 diagonal 2 by 2 blocks,
each of the form

(

2i cos(j/(n+ 1)) 2i cos(k/(m+ 1))
2i cos(k/(m+ 1)) 2i cos(j/(n+ 1))

)

down the diagonal. We could diagonalize this, but there is not much point as
all we need is its determinant which is easy to evaluate. The determinant is the
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product of the determinants of all these 2 by 2 blocks, which is the square root
of

n
∏

j=1

m
∏

k=1

(2i cos(j/(n+ 1)))
2
+ (2i cos(k/(m+ 1)))

2

So the number of domino tilings is (up to sign) the Pfaffian, in other words the
4th root of the absolute value of this product. For example, there are 12988816
domino tilings of a chessboard.
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