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Abstract. Given a correspondence between a modular curve S and an elliptic curve A,
we prove that the intersection of any finite-rank subgroup of A with the set of points on A
corresponding to CM-points on S is finite. We prove also a version in which S is replaced
by a Shimura curve and A is replaced by a higher-dimensional abelian variety.
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1. Introduction

1.1. CM-points mapping into a finite rank subgroup. Let N ∈ Z satisfy N > 3. Let
X1(N) over Q be the complete modular curve attached to the group Γ1(N). If Y1(N) ⊂
X1(N) is the non-cuspidal locus then Y1(N)(Q) is in bijection with the set of isomorphism
classes of pairs (E,α) where E is an elliptic curve over Q and α : Z/NZ ↪→ E(Q) is an
injection. A CM-point on the curve X1(N) is a point in Y1(N)(Q) represented by a pair
(E,α) such that E has complex multiplication, i.e., End(E) 6= Z. Let CM ⊂ X1(N)(Q) be
the set of CM-points. Say that an abelian group Γ is of finite rank if dimQ(Γ ⊗Z Q) < ∞.
We prove that the images of CM-points in any elliptic curve A are mostly independent in
A(Q):

Theorem 1.1. Let A be an elliptic curve over Q. Let Φ: X1(N) → A be a non-constant
morphism. Let Γ ≤ A(Q) be a finite rank subgroup. Then Φ(CM) ∩ Γ is finite.

In fact, we extend Theorem 1.1 in various directions. First, we can replace the morphism
Φ by a correspondence between X1(N) and A. Second, we can replace A by a higher-
dimensional abelian variety. Third, we can “fatten” Γ in the style of [20] by replacing Γ by
Γ +Bε where Bε is a set of points of small Néron-Tate height. Fourth, we can prove variants
where X1(N) is replaced by a Shimura curve. For all of these, see Section 2.

1.2. Previous work. Most previous work on problems related to this paper concerned Heeg-
ner points, which are certain special points in Φ(CM) for a morphism Φ: X1(N)→ A. The
study of the linear dependences among Heegner points (and their traces) plays an important
role in work on the Birch and Swinnerton-Dyer conjecture, especially in the breakthroughs
by Gross-Zagier [10] and Kolyvagin [13]. See [7] for an exposition of this circle of ideas.
See also [18, 24, 6] for more recent advances, especially in relation to Mazur’s conjectures
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in [14]. In particular, [18] proved that there are only finitely many torsion Heegner points
on any elliptic curve over Q. Along slightly different lines it was recently proved in [21]
that if Q1, . . . , Qs are Heegner points associated to distinct quadratic imaginary fields and
if the odd parts of the class numbers of these fields are sufficiently large then Q1, . . . , Qs

are linearly independent. Recall that, by the classical theory of complex multiplication,
the set of all points in CM defined over a given number field is finite; this, together with
the Hermite-Minkowski theorem, implies that Φ(CM) ∩ Γ is finite for any finitely generated
Γ ≤ A(Q). In contrast, our finiteness results allow Γ to have points of unbounded degree (by
Northcott’s theorem, this is always the case if Γ contains an infinite set of bounded height,
for instance an infinite set of torsion points).

Pink has formulated and proved some results toward a conjecture combining the Mordell-
Lang and André-Oort conjectures [19]. Our Theorem 2.1 may also be seen as combining
the Mordell-Lang conjecture with the André-Oort conjecture (the latter appears only in a
trivial case, however, since we consider only 1-dimensional Shimura varieties). But as far as
we can tell, Pink’s conjecture, even if fully proved, would not imply any of our results: his
conjecture concerns subvarieties of mixed Shimura varieties such as the universal family of
abelian varieties over some Shimura variety, whereas our Theorem 2.1 concerns subvarieties
of the product of a Shimura curve (a modular curve) with an abelian variety where the
abelian variety is not required to bear any relationship to the Shimura curve.

Finally we mention [22, Theorem 1.1], which gives an estimate for the average height
of the points in the image of a Hecke correspondence Tm applied to a point of a modular
curve; see also [1] for a stronger version of this result. The estimate grows with m, so at
least one of the points in the image must be non-torsion; if moreover these points are Galois
conjugates (as is true for large prime m if they are not CM, as pointed out in the proof of
[22, Corollary 0.3]), then all are non-torsion.

1.3. Structure of the paper. Section 2 states all our variants of Theorem 1.1, and Sec-
tion 3 proves them. We use methods quite different from those used in the papers mentioned
in Section 1.2: our proofs rely on the fact that the limit measure promised by equidistribu-
tion results for Galois orbits in abelian varieties is incompatible with the limit measure in
equidistribution results for modular curves and Shimura curves.

1.4. The sequel to this paper. In [4], we prove “local” versions of these results, in which
Q is replaced by the completion of the maximal unramified extension of the ring Zp of p-
adic integers, and CM is replaced by the subset CL of canonical lift points. Although these
substitutions would appear to give a weaker statement, there are also several advantages:

(1) We obtain effective bounds for the size of the intersection.
(2) The results remain valid for certain Γ of infinite rank.
(3) The method applies also to prove results where CM is replaced by a (partial) isogeny

class of points in the modular or Shimura curve.

The proofs in [4] use arguments very different from those in this paper: they involve the
theory of arithmetic differential equations in the sense of [3].
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2. Variants

2.1. Modular curves and higher-dimensional abelian varieties. By variety, we mean
a separated scheme of finite type over a field. By a coset in an abelian variety A over an
algebraically closed field, we mean a translate of an abelian subvariety of A.

Theorem 2.1. Let S = X1(N) over Q for some N ≥ 1. Let A be an abelian variety over Q.
Let X be a closed irreducible subvariety of S × A. Let Γ ≤ A(Q) be a finite-rank subgroup.
If X(Q) ∩ (CM×Γ) is Zariski dense in X, then X = S ′ × A′ where S ′ is a subvariety of S
and A′ is a coset in A.

If in Theorem 2.1 we drop the assumption that X(Q) ∩ (CM×Γ) is Zariski dense in X,
we can apply Theorem 2.1 to the irreducible components of the Zariski closure of X(Q) ∩
(CM×Γ) to deduce the following equivalent form of Theorem 2.1.

Theorem 2.2. Let S,A,Γ be as in Theorem 2.1. Let X be a closed subvariety of S × A.
Then the intersection X(Q) ∩ (CM×Γ) is contained in a subvariety Z ⊆ X that is a finite
union of products S ′ × A′ where each S ′ is a subvariety of S and each A′ is a coset in A.

We can actually strengthen Theorem 2.1, as [20] strengthened the Mordell-Lang conjec-
ture, by fattening Γ as follows. Let h : A(Q)→ R≥0 be a canonical height function attached
to some symmetric ample line bundle on A. For Γ ≤ A(Q) and ε ≥ 0, let

Γε := { γ + a | γ ∈ Γ, a ∈ A(Q), h(a) ≤ ε }.
Theorem 2.3. Assume that S,A,X,Γ are as in Theorem 2.1. If X(Q)∩(CM×Γε) is Zariski
dense in X for every ε > 0, then X = S ′×A′ where S ′ is a subvariety of S and A′ is a coset
in A.

Just as Theorem 2.1 implied Theorem 2.2, Theorem 2.3 implies the following more general
(but equivalent) version of itself:

Theorem 2.4. Assume that S,A,Γ are as in Theorem 2.3. Let X be a closed subvariety of
S×A defined over Q. Then for some ε > 0, the intersection X(Q)∩ (CM×Γε) is contained
in a subvariety Z ⊆ X that is a finite union of products S ′×A′ where each S ′ is a subvariety
of S and each A′ is a coset in A.

2.2. Shimura curves. Let D be a non-split indefinite quaternion algebra over Q. Fix a
maximal order OD once and for all. Let XD(U) be the Shimura curve attached to the pair
(D,U), where U is a sufficiently small compact subgroup of (OD ⊗ (lim←−Z/mZ))× such that

XD(U) is connected: see [5, 27]. A fake elliptic curve1 is a pair (E, i) consisting of an abelian
surface E over Q and an embedding i : OD → End(E). The set XD(U)(Q) is in bijection
with the set of isomorphism classes of fake elliptic curves equipped with a level U structure
in the sense of [5, 27].

The classification of endomorphism algebras [16, p. 202] shows that for any fake elliptic
curve (E, i), the algebra (EndE)⊗Q is isomorphic to either D or D⊗K 'M2(K) for some

1In the literature this is sometimes called a “false elliptic curve”.
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imaginary quadratic field K embeddable in D. In the latter case, (E, i) is called CM; then
E is isogenous to the square of an elliptic curve with CM by an order in K. A CM-point of
S(Q) is a point whose associated (E, i) is CM. Let CM ⊂ S(Q) be the set of CM-points on
S.

Theorem 2.5. Let S = XD(U) over Q, let A be an abelian variety over Q, and let Φ: S → A
be a morphism. Let Γ ≤ A(Q) be a finite-rank subgroup. Then Φ(CM) ∩ Γ is finite.

Finally, we can again fatten Γ:

Theorem 2.6. In the notation of Theorem 2.5, there exists ε > 0 such that Φ(CM) ∩ Γε is
finite.

Theorems 2.3 and 2.6 imply Theorem 1.1 and all the other results in this section, so we
focus on them.

3. Proofs

We begin with Theorem 2.3; for its proof we need some measure-theoretic prerequisites.

Lemma 3.1. Let S be a smooth projective curve over C. Let X be a (possibly singular)
closed N-dimensional subvariety of Pn

C. Let π : X → S be a morphism. Let s ∈ S(C).
Equip S(C) and Pn(C) with real analytic Riemannian metrics. Let Br be the open disk in
S with center s and radius r, and let B′r = Br − {s}. Then there exists δ > 0 such that the
N-dimensional volume of π−1(B′r) with respect to the metric on Pn(C) is O(rδ) as r → 0.

Proof. Irreducible components of X having dimension less than N have zero N -dimensional
volume, so we may reduce to the case in which X is irreducible of dimension N .

Define ∆ := {z ∈ C : |z| < 1} and N := {z ∈ C : |z| ≤ 1/2}. Let gP and gS be the given
metrics on Pn(C) and S(C). Let µ be Lebesgue measure on CN . Fix a holomorphic chart
ιS : ∆→ S(C) mapping 0 to s.

We may assume that dim π−1(s) < N . By work of Hironaka, there exists a desingular-
ization p : Y → X (see [12, Corollary 3.22]) and we may assume that the fiber of the map
f := π ◦ p : Y → S above s is a simple normal crossing divisor (see [12, Theorem 3.21]).
Then for each y ∈ f−1(s), there exists a holomorphic chart ιY : ∆N → Y (C) mapping 0 to
y such that f is given with respect to ιY and ιS by

h : ∆N → ∆

z = (z1, . . . , zN) 7→ u(z)ze11 · · · z
eN
N

for some nonvanishing holomorphic function u : ∆N → C and ei ∈ Z≥0. By compactness,
there exist ε > 0 and finitely many ιY such that the sets ιY (NN) cover f−1(Bε).

Since N is compact, (ι∗SgS)|N is bounded above and below by positive constants times
the standard metric. Similarly, the pullback of gP to NN is bounded above in terms of the
standard metric. Thus we reduce to showing that for each ιY , there exists δ > 0 such that

µ
(
{z ∈ NN : |h(z)| < r}

)
= O(rδ)

as r → 0.
Let umin := inf{|u(z)| : z ∈ NN} > 0. We may assume that r < umin. Fix E >

∑
ei. Let

ρ := (r/umin)1/E < 1. If |zi| ≥ ρ for all i, then |h(z)| ≥ uminρ
E = r. Thus

{z ∈ NN : |h(z)| < r} ⊆ {z ∈ NN : |zi| < ρ for some i}.
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The volume of the latter is O(ρ2) = O(r2/E) as r → 0. �

Lemma 3.2. Let Y,H be varieties over C, with Y proper. Let X be a closed subvariety of
Y ×H. Let (hi) be a sequence in H(C) converging to h∞. For i ≤ ∞, let Xi be the fiber of
X → H above hi. View Xi as a subvariety of Y . Then any open neighborhood N of X∞(C)
in the complex topology contains Xi(C) for all sufficiently large i.

Proof. The open set ((Y ×H)−X)(C)∪ (N ×H(C)) contains Y (C)×{h∞}, so it contains
also Y (C)×U for some open neighborhood U of h∞ in H, by the “tube lemma for compact
spaces” (Lemma 5.8 on p. 169 of [17]). For large i, we have hi ∈ U , and then Xi(C) ⊆ N . �

From now on, we assume that S = X1(N) as in Theorem 2.3. LetH := {τ ∈ C : Im τ > 0},
and let H∗ := H ∪P1(Q), so S(C) = Γ1(N)\H∗. Let ∞S ∈ S(C) be the image of the cusp
∞ ∈ P1(Q) ⊂ H∗. Choose a real analytic Riemannian metric on S(C). Define Br to be
the open disk in S(C) with center ∞S and radius r with respect to the metric. Let µH be
the probability measure on S(C) whose pullback to H equals a multiple of the hyperbolic
measure dx dy

y2
.

We next show that µH blows up relative to the Riemannian metric near the cusp ∞S.
(The Riemannian volume of Br is only O(r2) as r → 0.)

Lemma 3.3. There exists u > 0 such that for all sufficiently small r > 0, we have µH(Br) >
u/ log(1/r).

Proof. Let τ be the usual parameter on H. Then q := e2πiτ is an analytic uniformizer
at ∞S ∈ S(C) (defined on some neighborhood of ∞S) because the subgroup of Γ1(N) ⊆
PSL2(Z) stabilizing ∞ ∈ H∗ is generated by ( 1 1

0 1 ) . So there exists c > 0 such that for all
sufficiently small r, in the fundamental domain in H, the part corresponding to Br contains
the part where |q| < cr. The inequality |q| < cr is equivalent to Im(τ) > 1

2π
log(1/(cr)),

so µH(Br) is at least a constant times 1/ log(1/(cr)) for sufficiently small r. If u is small
enough, this exceeds u/ log(1/r) for all sufficiently small r. �

We will need also an equidistribution result for CM points. The first such equidistribution
result was proved in [8], and this has been generalized in several directions by several authors:
see Section 5.4 of the survey paper [15], for instance. The version we use is a special case of
a result in [28].

Lemma 3.4. Let k be a finite extension of Q. Fix an embedding k ↪→ C. Let S be a modular
curve X1(N) or a Shimura curve XD(U) over k. Let (xi) be an infinite sequence of distinct
CM-points in S(k). The uniform probability measure on the Gal(k/k)-orbit of xi converges
weakly as i→∞ to the measure µH on S(C).

Proof. This follows from Corollary 3.3 of [28]. Namely, we choose δ < 1/2 as on p. 3663
of [28], choose ε > 0 so that δ/2 + 1/4 + ε < 1/2, and define the “CM-suborbit” O(xi) as the
Gal(k/k)-orbit of xi. The hypothesis of Corollary 3.3 of [28] is satisfied, by the Brauer-Siegel
theorem (see the first remark following Corollary 3.3 of [28]). �

Proof of Theorem 2.3. Let A′ be the image of X → A. By Corollary 9 of [20] (also proved
partially independently as Theorem 1.2 of [26]) applied to A′ ⊆ A, we have that A′ is a coset.
We may translate to assume that A′ is an abelian subvariety, and hence reduce to the case
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where X → A is surjective. We may assume also that X → S is surjective, since dimS = 1.
We want X = S × A. Suppose not. Then X → A is generically finite, say of degree d.

The group Γ is contained in the division hull of a finitely generated group Γ0. Choose a
number field k ⊂ Q such that A, S,X are all defined over k and Γ0 ≤ A(k).

Since X(Q)∩ (CM×Γε) is Zariski dense in X for every ε > 0, and since X has only count-
ably many subvarieties, we may choose a generic infinite sequence of points xi = (si, ai) ∈
X(Q) with si ∈ CM and ai ∈ Γεi where εi → 0. (“Generic” means that each proper subvari-
ety of X contains at most finitely many xi.) In particular, each si appears only finitely often.
Since class numbers of imaginary quadratic fields tend to infinity, we have [k(si) : k] → ∞.
So [k(xi) : k]→∞. For all but finitely many i, the ai lie in the open locus above which the
fibers of X → A have size d, and then [k(xi) : k] ≤ d[k(ai) : k]. Thus [k(ai) : k]→∞.

The ai form a sequence of almost division points relative to k in the sense of [26]. By
passing to a subsequence we may assume that they have a coherent limit (C, b + T ) in the
sense of [26], where C is an abelian subvariety of A, and b ∈ A(C)/C(C), and T is a finite
set of torsion points of A/C. Since [k(ai) : k] → ∞, we have dimC > 0 by definition of

coherent limit. By replacing X by its image under S × A (id,φ)−→ S × Ã for a suitable isogeny
φ : A → Ã, we may reduce to the case where T = {0} and A ' B × C for some abelian
subvariety B of A. Identify A/C with B. Write ai = (bi, ci) with bi ∈ B(Q) and ci ∈ C(Q).
By definition of T , we have bi ∈ B(k). By Theorem 1.1 of [26], the uniform probability
measure on the orbit Gal(k/k)ai (supported on {bi}×C(C)) converges weakly as i→∞ to
the C(C)-invariant probability measure on {b}×C(C). So the uniform probability measure
on Gal(k/k)ci converges to Haar measure µC on C(C).

For each i, let Xbi be the fiber of the projection X → B above bi, viewed as a subvariety
of S × C. Since the bi are generic in B, we may pass to a subsequence to assume that the
Xbi have the same Hilbert polynomial (with respect to some embedding S × C ↪→ PN) and
that the corresponding points of the Hilbert scheme H converge in the complex topology;
let Xb∞ ⊆ S × C be the closed subscheme corresponding to the limit. We have dimXbi <
dim(S × C) for all finite i (and hence also for i = ∞), since otherwise by genericity of the
bi, we would have X = S ×B × C = S × A.

Let πC : S × B × C → C be the projection. Also, for i ≤ ∞, let πS,i : Xbi → S be the
projection.

Choose a real analytic Riemannian metric on C(C) whose associated volume form equals
µC . Let g = dimC. Let B′r = Br − {∞}. By Lemma 3.3, there exists u > 0 such that
µH(B′r) = µH(Br) > u/ log(1/r) for all sufficiently small r. On the other hand, Lemma 3.1
implies that for some δ > 0, the g-dimensional volume of π−1S,∞(B′r) is O(rδ) as r → 0.

Let Lr := πC(π−1S,∞(B′r)). Projection onto C can only decrease g-dimensional volume, so

µC(Lr) = O(rδ). Thus we may fix r > 0 such that µH(B′r) > µC(Lr). Let L = Lr. Fix a
compact annulus K ⊆ B′r large enough so that µH(K) > µC(L).

For a compact subset M ′ of a metric space M , let NρM
′ be the set of points in M whose

distance to M ′ is less than ρ. Fix ρ > 0 such that NρK ⊆ B′r. By Lemma 3.2 with
Y = S × C, with H the Hilbert scheme, and X the universal family in Y × H, we have
Xbi(C) ⊆ NρXb∞(C) after discarding finitely many i. In particular, every point of π−1S,i (K)
is within ρ of a point of Xb∞(C). The S-projections of the points of Xb∞(C) so used are
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then within ρ of K, so
π−1S,i (K) ⊆ π−1S,∞(NρK) ⊆ π−1S,∞(B′r).

Projecting to C, we obtain

(3.5) πC(π−1S,i (K)) ⊆ L.

Now as i→∞, the fraction of points of Gal(k/k)xi whose S-projection lies in K tends to
µH(K) by Lemma 3.4, and the fraction of points of Gal(k/k)xi whose C-projection lies in L
tends to µC(L). But (3.5) implies that the first set of points is contained in the second set
of points, so µH(K) ≤ µC(L), contradicting the choice of K. �

For the proof of Theorem 2.6, we will need the following:

Lemma 3.6. Let Φ: S → A be a morphism from a Shimura curve to an elliptic curve A over
C. Let µH be the hyperbolic probability measure on S(C). Let µA be the Haar probability
measure on A(C). Then Φ∗µH 6= µA.

Proof. By replacing S with a finite cover, we may assume that H → S(C) is unramified. The
universal cover of A(C) is not biholomorphic to H, so the composition H → S(C)→ A(C)
cannot be unramified. Hence Φ is ramified. Pick s ∈ S(C) at which the ramification
index e is > 1. Let a = Φ(s). Choose a Riemannian metric on A(C) inducing the Haar
probability measure µA. Let Br be the disk of radius r centered at a. With respect to
suitable uniformizing parameters, Φ near s is equivalent to z 7→ ze, so there exists c > 0
such that µH(Φ−1(Br)) > cµA(Br)

1/e for all sufficiently small r. In particular, for sufficiently
small r, we have (Φ∗µH) (Br) = µH(Φ−1(Br)) > µA(Br). �

Proof of Theorem 2.6. As in the first three sentences of the proof of Theorem 2.3, we may
use Corollary 9 of [20] to reduce to the case that Φ is surjective. If A = 0, there is nothing
to show, so we may assume that A is an elliptic curve.

Choose a number field k ⊂ Q such that A, S,X are all defined over k and Γ is contained
in the division hull of A(k).

If the conclusion fails, then there is an infinite sequence (si) in CM with Φ(si) ∈ Γεi
for some εi → 0. Let ai = Φ(si). By Lemma 3.4, the uniform probability measure on
Gal(k/k)si converges weakly to µH on S(C). It follows that the uniform probability measure
on Gal(k/k)ai converges weakly to Φ∗µH on A(C).

On the other hand, (ai) is a sequence of almost division points. By the previous paragraph,
[k(si) : k]→∞, so [k(ai) : k]→∞. Passing to a subsequence, we may assume that (ai) has
a coherent limit, which can only be (A, {0}), since [k(ai) : k]→∞. By Theorem 1.1 of [26],
the uniform probability measure on Gal(k/k)ai converges weakly to the Haar measure µA
on A(C).

The previous two paragraphs imply that Φ∗µH = µA, contradicting Lemma 3.6. �
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