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Abstract. Assuming the Tate conjecture and the computability of étale cohomology with
finite coefficients, we give an algorithm that computes the Néron–Severi group of any smooth
projective geometrically integral variety, and also the rank of the group of numerical equiv-
alence classes of codimension p cycles for any p.

1. Introduction

Let k be a field, and let ksep be a separable closure. Let X be a smooth projective
geometrically integral k-variety, and let Xsep := X ×k ksep.

If k = C, then the Lefschetz (1, 1) theorem identifies the Néron–Severi group NSX (see
Section 3 for definitions) with the subgroup of H2(X(C),Z) mapping into the subspace
H1,1(X) of H2(X(C),C). Analogously, if k is a finitely generated field, then the Tate conjec-
ture describes (NSXsep)⊗Q` in terms of the action of Gal(ksep/k) on H2

ét(X
sep,Q`(1)), for

any prime ` 6= char k.
Can such descriptions be transformed into algorithms for computing NSXsep? To make

sense of this question, we assume that k is replaced by a finitely generated subfield over
which X is defined; then X and k admit a finite description suitable for computer input (see
Section 7.1). Using the Lefschetz (1, 1) theorem involves working over the uncountable field
C, while using the Tate conjecture involves an action of an uncountable Galois group on a
vector space over an uncountable field Q`, so it is not clear a priori that either approach can
be made into an algorithm.

In this paper, assuming only the ability to compute the finite Galois modules Hi
ét(X

sep, µ`n)
for each i ≤ 2 and n, we give an algorithm for computing NSXsep that terminates if and
only if the Tate conjecture holds for X (Remark 8.34). Moreover, if k is finite, then we can
even avoid computing the Galois modules Hi

ét(X
sep, µ`n), by instead using point-counting to

compute the zeta function of X, as is well known (Theorem 8.36(b)). In any case, we give
an algorithm to compute Hi

ét(X
sep, µ`n) for any variety in characteristic 0 (Theorem 7.9)

and any variety that lifts to characteristic 0 (Corollary 7.10); also, after the first version of
the present article was made available, Madore and Orgogozo announced an algorithm to
compute it in general [MO14, Théorème 0.9] (they work over an algebraically closed ground
field, but the cohomology groups are unchanged in passing from ksep to k).
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Combining our results with the truth of the Tate conjecture for K3 surfaces X over finitely
generated fields of characteristic not 2 ([Nyg83, NO85, Mau14, Cha13, MP14]) yields an un-
conditional algorithm for computing NSXsep for all such K3 surfaces (Theorem 8.38). (See
[Tat94, Section 5] and [And96] for some other cases in which the Tate conjecture is known.)
We also provide an unconditional algorithm for computing the torsion subgroup (NSXsep)tors

for any X over any finitely generated field k (Theorem 8.32).
Finally, we prove also statements for cycles of higher codimension. In particular, we

describe a conditional algorithm that computes the rank of the group NumpXsep of codi-
mension p cycles modulo numerical equivalence (Theorem 8.15).

If ksep is replaced by an algebraic closure k in any of the results above, the resulting
analogue holds (Remarks 8.17 and 8.35).

2. Previous approaches

Several techniques exist in the literature for obtaining information on Néron–Severi groups:

• Lower bounds on the rank are often obtained by exhibiting divisors explicitly.
• An initial upper bound is given by the second Betti number, which is computable

(see Proposition 8.2).
• Over C, Hodge theory provides the improved upper bound h1,1, which again is com-

putable. (Indeed, software exists for computing all the Hodge numbers hp,q :=
dim Hq(X,Ωp), as a special case of computing cohomology of coherent sheaves on
projective varieties [Vas98, Appendix C.3].)
• Over a finite field k, computation of the zeta function can yield an improved upper

bound: see Section 8.5 for details.
• Over finitely generated fields k, one can spread out X to a smooth projective scheme
X over a finitely generated Z-algebra and reduce modulo maximal ideals to obtain
injective specialization homomorphisms (NSXsep) ⊗ Q → (NSXF ) ⊗ Q where F
is the finite residue field (see [vL07b, Proposition 6.2] or [MP12, Proposition 3.6],
for example). Combining this with the method of the previous item bounds the
rank of NSXsep. In some cases, one can prove directly that certain elements of
(NSXF ) ⊗ Q are not in the image of the specialization homomorphism, to improve
the bound [EJ11b].
• The previous item can be improved also by using more than one reduction if one

takes into account that the specialization homomorphisms preserve additional struc-
ture, such as the intersection pairing in the case dimX = 2 [vL07a] or the Ga-
lois action [EJ11a]. In the dimX = 2 case, the discriminant of the intersection
pairing can be obtained, up to a square factor, either from explicit generators for
(NSXF ) ⊗ Q [vL07a] or from the Artin–Tate conjecture [Klo07]. F. Charles proved
that for a K3 surface X over a number field, the information from reductions is suf-
ficient to determine the rank of NSXsep, assuming the Hodge conjecture for 2-cycles
on X ×X [Cha14].
• If X is a quotient of another variety Y by a finite group G, then the natural map

(NSXsep) ⊗ Q → ((NSY sep) ⊗ Q)G is an isomorphism. For instance, this has been
applied to Delsarte surfaces, i.e., surfaces in P3 defined by a homogeneous form with
four monomials, using that they are quotients of Fermat surfaces [Shi86].

2



• When X is an elliptic surface, the rank of NSXsep is related to the rank of the
Mordell–Weil group of the generic fiber [Tat95, p. 429; Shi72, Corollary 1.5; Shi90,
Corollary 5.3]. This has been generalized in various ways, for example to fibrations
into abelian varieties [Kah09; Ogu09, Theorem 1.1].
• WhenX is a K3 surface of degree 2 over a number field, the Kuga–Satake construction

relates the Hodge classes on X to the Hodge classes on an abelian variety of dimension
219. B. Hassett, A. Kresch, and Yu. Tschinkel use this to give an algorithm to compute
NSXsep for such X [HKT13, Proposition 19].

Also, [Sim08] shows that if one assumes the Hodge conjecture, then one can decide, given a
nice variety X over Q ⊆ C and a singular homology class γ ∈ H2p(X(C),Q), whether γ is
the class of an algebraic cycle.

3. Notation

Given a module A over an integral domain R, let Ators be its torsion submodule, let

Ã := A/Ators, and let rkA := dimK(A ⊗R K) where K := FracR. If A is a submodule of
another R-module B, the saturation of A in B is {b ∈ B : nb ∈ A for some nonzero n ∈ R}.
If A is a G-module for some group G, then AG is the subgroup of invariant elements. We say
that a G-module A is finite (resp. finitely generated) if it is so as a set (resp. abelian group).

Given a field k, let k be an algebraic closure, let ksep be the separable closure inside k,
let Gk := Gal(ksep/k) ' Aut(k/k), and let κ be the characteristic of k. A variety X over a
field k is a separated scheme of finite type over k. For such X, let Xsep := X ×k ksep and
X := X ×k k. Call X nice if it is smooth, projective, and geometrically integral.

Suppose that X is a nice k-variety. Let PicX be its Picard group. Let PicX/k be the Picard
scheme of X over k. There is an injection PicX → PicX/k(k), but it is not always surjective.

Let Pic0
X/k be the connected component of the identity in PicX/k. Let Pic0X ≤ PicX be the

group of isomorphism classes of line bundles such that the corresponding k-point of PicX/k
lies in Pic0

X/k; any such line bundle L (or divisor representing it) is called algebraically
equivalent to 0. Equivalently, a line bundle L is algebraically equivalent to 0 if there is a
connected variety B and a line bundle M on X × B such that M restricts to the trivial
line bundle above one point of B and to L above another (this holds even over the ground
field k: take B to be a component H of EffDivX lying above a translate of Pic0

X/k as in

Lemma 8.29(a,b)). Define the Néron–Severi group NSX as the quotient PicX/Pic0X; it
can be identified with the set of components of PicX/k containing the class of a divisor of
X over k (which is stronger than assuming that the component has a k-point). Then NSX
is a finitely generated abelian group [Nér52, p. 145, Théorème 2] (see [SGA 6, XIII.5.1]
for another proof). Let PicτX/k be the finite union of connected components of PicX/k
parametrizing classes of line bundles whose class in NSX is torsion.

Let Zp(X) be the group of codimension p cycles on X. Let NumpX be the quotient of
Zp(X) by the subgroup of cycles numerically equivalent to 0. Then NumpX is a finite-
rank free abelian group. Let Z1(X)τ be the set of divisors z ∈ Z1(X) having a positive
multiple that is algebraically equivalent to 0. Let (PicX)τ be the image of Z1(X)τ under
Z1(X)→ PicX.

If m ∈ Z>0 and κ - m, and i, p ∈ Z, let Hi(Xsep, (Z/mZ)(p)) be the étale cohomol-
ogy group; this is a finite abelian group. For each prime ` 6= κ, define Hi(Xsep,Z`(p)) :=
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lim←−n Hi(Xsep, (Z/`nZ)(p)), a finitely generated Z`-module; and define Hi(Xsep,Q`(p)) :=

Hi(Xsep,Z`(p))⊗Z`
Q`, a finite-dimensional Q`-vector space; its dimension bi(X) is indepen-

dent of p, and is called an `-adic Betti number.
Let X be a nice k-variety. Let K(X) be its Grothendieck group of coherent sheaves. For a

coherent sheaf F on a projective variety X, define χ(F ) :=
∑

i≥0(−1)i dim Hi(X,F ); this
induces a homomorphism χ : K(X)→ Z sending the class cl(F ) of F to χ(F ).

4. Group-theoretic lemmas

Given any prime `, let `′ := ` if ` 6= 2, and `′ := 4 if ` = 2.

Lemma 4.1 (cf. [Min87, §1]). Let ` be a prime. Let G be a group acting through a finite
quotient on a finite-rank free Z-module or Z`-module Λ. If G acts trivially on Λ/`′Λ, then
G acts trivially on Λ.

Proof. Let n := rk Λ. Write `′ =: `s. For r ≥ s, let Ur := 1 + `rMn(Z`). It suffices to
show that there are no non-identity elements of finite order in the kernel Us of GLn(Z`) →
GLn(Z`/`′Z`). In fact, for r ≥ s the binomial theorem shows that 1 +A ∈ Ur−Ur+1 implies
(1 + A)` ∈ Ur+1 − Ur+2, so by induction any non-identity 1 + A ∈ Us has infinitely many
distinct powers, and cannot be of finite order. �

Lemma 4.2. Let a topological group G act continuously on a finite-rank free Z`-module Λ.
Let r := rk ΛG. Then the following hold.

(a) The continuous cohomology group H1(G,Λ)[`∞] is finite.
(b) #(Λ/`nΛ)G = O(`rn) as n→∞.

Proof. For each n, taking continuous group cohomology of 0→ Λ
`n→ Λ→ Λ/`nΛ→ 0 yields

0→ ΛG

`n(ΛG)
→
(

Λ

`nΛ

)G
→ H1(G,Λ)[`n]→ 0. (4.3)

(a) By (4.3) for n = 1, the group H1(G,Λ)[`] is finite. So if H1(G,Λ)[`∞] is infinite, it
contains a copy of Q`/Z`, contradicting the Y = 0 case of [Tat76, Proposition 2.1].

(b) In (4.3), the group on the left has size `rn, and the group on the right has size O(1) as
n→∞, by (a). �

5. Upper bound on the rank of the group of Tate classes

Setup 5.1. Let k be a finitely generated field. Let G := Gk. Let X be a nice variety
over k. Let d := dimX. Fix p ∈ {0, 1, . . . , d}. For each m ∈ Z>0 with κ - m, define
Tm := H2p(Xsep, (Z/mZ)(p)). Fix a prime ` 6= κ. Define T := H2p(Xsep,Z`(p)), and V :=
H2p(Xsep,Q`(p)).

An element of V is called a Tate class if it is fixed by a (finite-index) open subgroup of G.
Let V Tate ≤ V be the Q`-subspace of Tate classes. Let M be the Z`-submodule of elements
of T mapping to Tate classes in V . Let r := rkM = dimV Tate.

Lemma 5.2. For each i, n ∈ Z≥0, there is an exact sequence

0→ Hi(Xsep,Z`(p))
`nHi(Xsep,Z`(p))

→ Hi(Xsep, (Z/`nZ)(p))→ Hi+1(Xsep,Z`(p))[`n]→ 0.
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Proof. Use [Mil80, Lemma V.1.11] to take cohomology of

0→ Z`(p)
`n→ Z`(p)→ (Z/`nZ)(p)→ 0. �

Corollary 5.3. For each n ≥ 0, there is an exact sequence

0→ T

`nT
→ T`n → H2p+1(Xsep,Z`(p))[`n]→ 0.

Proof. Take i = 2p in Lemma 5.2. �

Corollary 5.4. For each n ≥ 0, there is a canonical injection M/`nM ↪→ T`n.

Proof. Since M is saturated in T , we have an injection M/`nM ↪→ T/`nT . Compose with
the first map in Corollary 5.3. �

Lemma 5.5. Let t ∈ Z≥0 be such that `tTtors = 0. Assume that G acts trivially on T`′.

(a) For any n ≥ t, we have #TG`n ≥ `r(n−t).
(b) We have #TG`n = O(`rn) as n→∞.
(c) We have

r = min

{⌊
log #TG`n

log `n−t

⌋
: n > t

}
.

Proof. By Corollary 5.4, G acts trivially on M/`′M , and hence also on M/`M and M̃/`′M̃ .

The G-orbit of each element of M̃ is finite by definition of Tate class, and M̃ is finitely

generated as a Z`-module, so G acts through a finite quotient on M̃ . By Lemma 4.1, G acts

trivially on M̃ .

(a) Multiplication by `t on M kills Mtors, so it factors as M → M̃ � `tM . Hence G acts
trivially on `tM , so for n ≥ t, the quotient `tM/`nM is contained in (M/`nM)G. By
Corollary 5.4, we deduce the inequality #TG`n ≥ #(M/`nM)G ≥ #(`tM/`nM) ≥ `r(n−t).

(b) By definition of M , we have T̃G ⊆ M̃ = M̃G ⊆ T̃G, so rk T̃G = r. Dividing the first two
terms in Corollary 5.3 by the images of Ttors yields

0→ T̃

`nT̃
→ T`n

In
→ H2p+1(Xsep,Z`(p))[`n]→ 0,

where In is the image of Ttors in T`n . This implies the second inequality in

#TG`n ≤ #IGn ·#
(
T`n

In

)G
≤ #IGn ·#

(
T̃

`nT̃

)G

·#
(
H2p+1(Xsep,Z`(p))[`n]

)G
.

Since Hi(Xsep,Z`(p)) is a finitely generated Z`-module for each i, the first and third

factors on the right are O(1). On the other hand, Lemma 4.2(b) yields #(T̃ /`nT̃ )G =
O(`rn). Multiplying shows that #TG`n = O(`rn).

(c) The statement follows by combining the previous items. �
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6. Cycles under field extension

In this section, assume Setup 5.1.

Proposition 6.1.

(a) For any extension L of k, the natural map NumpX → NumpXL is injective.
(b) The image of NumpX → NumpX is a finite-index subgroup of (NumpX)G.
(c) If κ > 0, the index of NumpXsep in NumpX is finite and equal to a power of κ.

The same three statements hold for NS instead of Nump.

Proof.

(a) If z ∈ Zp(X) has intersection number 0 with all p-cycles on XL, then in particular it has
intersection number 0 with all p-cycles on X.

(b) Suppose that [z] ∈ (NumpX)G, where z ∈ Zp(X). Then z comes from some zL ∈ Zp(XL)
for some finite extension L of k. Let n := [L : k]. Then n[z] = trL/k[z] comes from

trL/k zL ∈ Zp(X). Hence the cokernel of NumpX → (NumpX)G is torsion, but it is also
finitely generated, so it is finite.

(c) We may assume that k = ksep. Then G = {1}, so (b) implies that NumpXsep is of finite
index in NumpX. Moreover, in the proof of (b), [L : k] is always a power of κ, so the
index is a power of κ.

Statement (a) for NS follows from the fact that the formation of Pic0
X/k respects field ex-

tension [Kle05, Proposition 9.5.3]. The proofs of (b) and (c) for NS are the same as for
Nump. �

Proposition 6.2. If k is finite, then the natural homomorphisms PicX → (PicXsep)G and
NSX → (NSXsep)G are isomorphisms.

Proof. That PicX → (PicXsep)G is an isomorphism follows from the Hochschild–Serre spec-
tral sequence for étale cohomology and the vanishing of the Brauer group of k. Lang’s
theorem [Lan56] implies H1(k,Pic0Xsep) = 0, so taking Galois cohomology of

0→ Pic0Xsep → PicXsep → NSXsep → 0

shows that the homomorphism PicX = (PicXsep)G → (NSXsep)G is surjective. On the
other hand, its image is NSX. �

7. Hypotheses and conjectures

Our computability results rely on the ability to compute étale cohomology with finite
coefficients. Some of the results are conditional also on the Tate conjecture and related
conjectures. We now formulate these hypotheses precisely, so that they can be referred to
in our main theorems.

7.1. Explicit representation of objects. To specify an ideal in a polynomial ring over
Z in finitely many indeterminates, we give a finite list of generators. To specify a finitely
generated Z-algebra A, we give an ideal I in a polynomial ring R as above such that A
is isomorphic to R/I. To specify a finitely generated field k, we give a finitely generated
Z-algebra A that is a domain such that k is isomorphic to FracA. To specify a continuous
Gk-action on a finitely generated abelian group A, we give a finite Galois extension k′ of k
together with an action of Gal(k′/k) on A such that there exists a k-embedding k′ ↪→ ksep
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such that the original Gk-action is the composition Gk � Gal(k′/k) → AutA. To specify
a Gk-action on finitely many finitely generated abelian groups, we use the same k′ for all
of them. To specify a projective variety X, we give its homogeneous ideal for a particular
embedding of X in some projective space. To specify a codimension p cycle on X, we give
an explicit integer combination of codimension p integral subvarieties of X.

Definition 7.1. Given k, X, and p as in Setup 5.1, to compute a Gk-module homomorphism
f from Zp(Xsep) to an (abstract) finitely generated Gk-module A means to compute

• a finite Galois extension k′ of k,
• an explicit finitely generated Gal(k′/k)-module A′, and
• an algorithm that takes as input a finite separable extension L of k′ and an element

of Zp(XL) and returns an element of A′,

such that there exists a k-embedding k′ ↪→ ksep and an isomorphism A′
∼→ A such that

the composition Zp(XL) → A′
∼→ A factors as Zp(XL) → Zp(Xsep)

f→ A for some (or
equivalently, every) k′-embedding L ↪→ ksep.

Remark 7.2. A similar definition can be made for Gk-module homomorphisms defined only
on a Gk-submodule of Zp(Xsep).

Remark 7.3. If k is a finitely generated field of characteristic 0, we can explicitly identify
finite extensions of k with subfields of C consisting of computable numbers as follows. (To
say that z ∈ C is computable means that there is an algorithm that given n ∈ Z≥1 returns an
element α ∈ Q(i) such that |z−α| < 1/n.) Let t1, . . . , tn be a transcendence basis for k over
Q. Embed Q(t1, . . . , tn) in C by mapping tj to exp(21/j); these are algebraically independent
over Q by the Lindemann–Weierstrass theorem. As needed, embed finite extensions of
Q(t1, . . . , tn) (starting with k) into C by writing down the minimal polynomial of each new
field generator over the subfield generated so far, together with an approximation to an
appropriate root in C good enough to distinguish it from the other roots.

Remark 7.3 will be useful in relating étale cohomology over k to singular cohomology
over C.

7.2. Computability of étale cohomology.

Hypothesis 7.4 (Cohomology is computable). There is an algorithm that takes as input
(k,X, `) as in Setup 5.1 and i, n ∈ Z≥0, and returns a finite Gk-module isomorphic to
Hi(Xsep,Z/`nZ).

Remark 7.5. Hypothesis 7.4 implies also that we can compute the Tate twist Hi(Xsep, (Z/`nZ)(p)) '
Hi(Xsep,Z/`nZ)(p) for any p ∈ Z.

We will prove Hypothesis 7.4 for k of characteristic 0 (Theorem 7.9). In arbitrary char-
acteristic, we show only that we can “approximate Hi(Xsep,Z/`nZ) from below” (Proposi-
tion 7.7), but as mentioned in the introduction, a proof of Hypothesis 7.4 in full has been
announced [MO14, Théorème 0.9].

Following a suggestion of Lenny Taelman, we use étale Čech cocycles. By [Art71, Corollary
4.2], every element of Hi(Xsep,Z/`nZ) can be represented by a Čech cocycle for some étale
cover. Any étale cover U = (Uj → Xsep)j∈J may be refined by one for which J is finite and
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the morphisms Uj → Xsep are of finite presentation; from now on, we assume that all étale
covers satisfy these finiteness conditions. Then we can enumerate all étale Čech cochains.

Fix a projective embedding of X. Choose an étale Čech cocycle representing the class of
OXsep(1) in H1(Xsep,Gm). Using the Kummer sequence

0→ µ`n → Gm → Gm → 0

compute its coboundary: this is a cocycle representing the class of a hyperplane section
in H2(Xsep,Z/`nZ) (we ignore the Tate twist for now). Compute its d-fold cup product in
H2d(Xsep,Z/`n) ' Z/`nZ; this represents D times the class of a point, where D is the degree
of X. If ` - D, we can multiply by the inverse of (D mod `) to obtain the class of a point. In
general, let `m be the highest power of ` dividing D; repeat the construction above to obtain
a cocycle ηD representing D times the class of a point in H2d(Xsep,Z/`m+nZ) ' Z/`m+nZ.
Search for another cocycle η1 in the same group such that Dη1 − ηD is the coboundary of
another cochain on some refinement. Eventually η1 will be found, and reducing its values
modulo `n yields a cocycle representing the class of a point in H2d(Xsep,Z/`nZ).

Lemma 7.6. There is an algorithm that takes as input (k,X, `) as in Setup 5.1 and i, n ∈ Z≥0

and two étale Čech cocycles representing elements of Hi(Xsep,Z/`n), and decides whether
their classes are equal.

Proof. We can subtract the cocycles, so it suffices to test whether a cocycle η represents 0.
By day, search for a cochain on some refinement whose coboundary is η. By night, search
for a cocycle η′ representing a class in H2d−i(Xsep,Z/`nZ), an integer j ∈ {1, 2, . . . , `n −
1}, and a cochain whose coboundary differs from η ∪ η′ by j times the class of a point
in H2d(Xsep,Z/`nZ) (see [Liu02, p. 194, Exercise 2.17] for an explicit formula for the cup
product). The search by day terminates if the class of η is 0, and the search by night
terminates if the class of η is nonzero, by Poincaré duality [SGA 41

2
, p. 71, Théorème 3.1]. �

Proposition 7.7. There is an algorithm that takes as input (k,X, `) as in Setup 5.1 and
i, n ∈ Z≥0 such that, when left running forever, it prints out an infinite sequence Λ0 ⊂ Λ1 ⊂
. . . of finite Gk-modules that stabilizes at a Gk-module isomorphic to Hi(Xsep,Z/`nZ).

Proof. By enumerating Čech cocycles, we represent more and more classes inside Hi(Xsep,Z/`nZ).
At any moment, we may construct the Gk-module structure of the finite subgroup gen-
erated by the classes found so far and their Galois conjugates, by using Lemma 7.6 to
test which Z/`nZ-combinations of them are 0. Eventually this Gk-module is the whole of
Hi(Xsep,Z/`nZ) (even if we do not yet have a way to detect when this has happened). �

Proposition 7.8. There is an algorithm that takes as input (k,X, `) as in Setup 5.1 and
i, n ∈ Z≥0, where k is of characteristic 0, and computes a finite abelian group isomor-
phic to the singular cohomology group Hi(X(C),Z/`nZ) for some embedding k ↪→ C as in
Remark 7.3. Similarly, one can compute a finitely generated abelian group isomorphic to
Hi(X(C),Z).
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Proof. One approach is to embed X in some Pnk and compose X(C) → Pn(C) with the
Mannoury embedding [Man00]

Pn(C) ↪→ R(n+1)2

(z0 : · · · : zn) 7→
(

ziz̄j∑
k zkz̄k

: 0 ≤ i, j ≤ n

)
to identify X(C) with a semialgebraic subset of Euclidean space, and then to apply [BPR06,
Remark 11.19(b) and the results it refers to] to compute a finite triangulation of X(C), which
yields the cohomology groups with coefficients in Z or Z/`nZ. For an alternative approach,
see [Sim08, Section 2.5]. �

Theorem 7.9. Hypothesis 7.4 restricted to characteristic 0 is true.

Proof. Identify k with a subfield of C as in Remark 7.3. By the standard comparison theorem,
the étale cohomology group Hi(Xsep,Z/`nZ) is isomorphic to the singular cohomology group
Hi(X(C),Z/`nZ). Use Proposition 7.8 to compute the size of the latter. Run the algorithm
in Proposition 7.7 and stop once #Λj equals this integer. Then Λj ' Hi(Xsep,Z/`nZ). �

Corollary 7.10. Hypothesis 7.4 restricted to varieties in positive characteristic that lift to
characteristic 0 is true.

Proof. If X lifts to a nice variety X in characteristic 0, then we can search for a suitable X
until we find one, and then compute the size of Hi(X sep,Z/`nZ), which is isomorphic to the
desired group Hi(Xsep,Z/`nZ). Then run the algorithm in Proposition 7.7 as before. �

Remark 7.11. Our approach to Theorem 7.9 above was partially inspired by an alternative
approach communicated to us by Lenny Taelman. His idea, in place of Proposition 7.7, was
to enumerate étale Čech cocycles and compute their images under a comparison isomorphism

Hi(Xsep,Z/`nZ)→ Hi(X(C),Z/`nZ)

explicitly (this assumes that given an étale morphism U → Xsep one can compute compatible
triangulations of U(C) and X(C)). Eventually a set of cocycles mapping bijectively onto
Hi(X(C),Z/`nZ) will be found. The Galois action could then be computed by searching for
coboundaries representing the difference of each Galois conjugate of each cocycle with some
other cocycle in the set.

7.3. The Tate conjecture. See [Tat94] for a survey of the relationships between the fol-
lowing two conjectures and many others.

Conjecture Tp(X, `) (Tate conjecture). Assume Setup 5.1. The cycle class homomorphism

Zp(Xsep)⊗Q` → V Tate

is surjective.

Conjecture Ep(X, `) (Numerical equivalence equals homological equivalence). Assume Setup 5.1.
An element of Zp(Xsep) is numerically equivalent to 0 if and only if its class in V is 0.

Remark 7.12. Conjecture E1(X, `) holds (see [Tat94, p. 78]).

Given (k,X, p, `) as in Setup 5.1, with k finite, let Vµ be the largest G-invariant subspace
of V on which all eigenvalues of the Frobenius are roots of unity. We have V Tate ≤ Vµ.
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Proposition 7.13. Fix X, p, and `, and assume Conjecture Ep(X, `). Then the following
integers are equal:

(a) the Z-rank of the Gk-module NumpXsep,
(b) the Z-rank of the image of Zp(Xsep) in V , and
(c) the Q`-dimension of the image of Zp(Xsep)⊗Q` in V .

The integer in (c) is less than or equal to the following equal integers,

(d) the Q`-dimension of V Tate and
(e) the Z`-rank of the Gk-module M of Section 5,

which, if k is finite, are less than or equal to

(f) the Q`-dimension of Vµ.

If moreover, Tp(X, `) holds, then all the integers (including (f) if k is finite) are equal.
Conversely, if (c) equals (d), then Tp(X, `) holds.

Proof. The only nontrivial statements are

• the equality of (b) and (c), which is [Tat94, Lemma 2.5], and
• the fact that Tp(X, `) and Ep(X, `) for k finite together imply the equality of (d)

and (f); this follows from [Tat94, Theorem 2.9, (b)⇒(c)]. �

8. Algorithms

8.1. Computing rank and torsion of étale cohomology.

Proposition 8.1. There is an algorithm that takes as input a nice variety X over Fq, and
returns its zeta function

ZX(T ) := exp

(
∞∑
n=1

#X(Fqn)

n
T n

)
∈ Q(T ).

Proof. From [Kat01, Corollary of Theorem 3], we obtain an upper bound B on the sum of
the `-adic Betti numbers bi(X). Then ZX(T ) is a rational function of degree at most B.
Compute #X(Fqn) for n ∈ {1, 2, . . . , 2B}; this determines the mod T 2B+1 Taylor expansion
of ZX(T ), which is enough to determine ZX(T ). �

Proposition 8.2. There is an algorithm that takes as input a finitely generated field k and
a nice variety X over k, and returns b0(X), . . . , b2 dimX(X).

Proof. First assume that k = Fq. Using Proposition 8.1, we compute the zeta function

ZX(T ). For each i, the Betti number bi(X) equals the number of complex poles of ZX(T )(−1)i

with absolute value q−i/2, counted with multiplicity; this number can be computed numeri-
cally since the absolute value of each zero or pole is an integer power of

√
q.

In the general case, we spread out X to a smooth projective scheme X over a finitely
presented Z-algebra R = Z[x1, . . . , xn]/(f1, . . . , fm). Search for a finite field F and a point
a ∈ Fn satisfying f1(a) = · · · = fm(a) = 0; eventually we will succeed; then F is an
explicit R-algebra. Set XF = X ×R F. Standard specialization theorems (e.g., [SGA 41

2
,

V, Théorème 3.1]) imply that bi(X) = bi(XF) for all i, so we reduce to the case of the
previous paragraph. �

The following statement and proof were suggested by Olivier Wittenberg.
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Proposition 8.3. Assume Hypothesis 7.4. There is an algorithm that takes as input (k,X, `)
as in Setup 5.1 and an integer i and returns a finite group that is isomorphic to Hi(Xsep,Z`)tors.

Proof. For each j, let Hj := Hj(Xsep,Z`). For integers j, n with n ≥ 0, let aj,n := #Hj[`n]

and bj := bj(X) = dimQ`
(Hj⊗Z`

Q`). Since Hj
tors is finite, #Hj

tors/`
nHj

tors = #Hj
tors[`

n] = aj,n,
so #Hj/`nHj = `nbj · aj,n. From Lemma 5.2 we find

#Hj(Xsep,Z/`nZ) = #
(
Hj/`nHj

)
·#
(
Hj+1[`n]

)
= `nbj · aj,n · aj+1,n. (8.4)

The left side is computable by Hypothesis 7.4, and bj is computable by Proposition 8.2.
Since aj,n = 1 for j < 0 and for j > 2 dimX, for any given n, we can use (8.4) to compute
aj,n for all j, by ascending or descending induction. Compute

1 = ai,0 ≤ ai,1 ≤ ai,2 ≤ · · · ≤ ai,N ≤ ai,N+1

until ai,N = ai,N+1. Then Hi
tors has exponent `N and Hi

tors is isomorphic to
⊕N

n=1(Z/`nZ)rn

with rn such that `rnai,n−1ai,n+1 = a2
i,n. �

Remark 8.5. The proof of Proposition 8.3 did not require the full strength of Hypothesis 7.4:
computability of the group Hj(Xsep,Z/`nZ) for all j < i or for all j ≥ i would have sufficed.

Remark 8.6. If k is of characteristic 0 (or X lifts to characteristic 0), then combining Theo-
rem 7.9 (or Corollary 7.10) with Proposition 8.3 lets us compute the group Hi(Xsep,Z`)tors

unconditionally.

8.2. Computing NumpXsep. Throughout this section, we assume Setup 5.1.

Lemma 8.7. There is an algorithm that takes as input k, p, X, and cycles y ∈ Zp(X) and
z ∈ Zd−p(X), and returns the intersection number y.z.

Proof. First, if y and z are integral cycles intersecting transversely, use Gröbner bases to
compute the degree of their intersection. If y and z are arbitrary cycles whose supports
intersect transversely, use bilinearity to reduce to the previous sentence. In general, search
for a rational equivalence between y and another p-cycle y′ such that the supports of y′ and
z intersect transversely; eventually y′ will be found; then apply the previous sentence to
compute y′.z. �

Remark 8.8. It should be possible to make the algorithm in the proof of Lemma 8.7 much
more efficient, by following a proof of Chow’s moving lemma instead of finding y′ by brute
force enumeration.

Remark 8.9. Alternatively, if y and z are integral cycles of complementary dimension that
do not necessarily intersect properly, their structure sheaves Oy and Oz admit resolutions
F • and G • (complexes of locally free OX-modules), and then

y.z =
∑
i,j≥0

(−1)i+jχ(F i ⊗ G j); (8.10)
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this should lead to another algorithm. (Formula (8.10) can be explained as follows: Replace
y and z by rationally equivalent cycles y′ and z′ that intersect transversely; then, in K(X),

cl(Oy′ ⊗ Oz′) = cl(Oy′) cl(Oz′) (by [SGA 6, p. 49, Proposition 2.7])

= cl(Oy) cl(Oz) (by [SGA 6, p. 59, Corollaire 1], using dim y + dim z = d)

=
∑
i≥0

(−1)i cl(F i)
∑
j≥0

(−1)j cl(G j)

=
∑
i,j≥0

(−1)i+j cl(F i ⊗ G j) (by [SGA 6, p. 49, (2.15 bis)]).

Since Oy′ ⊗Oz′ is a direct sum of skyscraper sheaves, applying χ : K(X)→ Z yields y′.z′ on
the left, which equals y.z.)

Similarly, one could prove the simpler but asymmetric formula y.z =
∑

i≥0(−1)iχ(F i ⊗
Oz).

The following lemma describes a decision problem for which we do not have an algorithm
that always terminates, but only a one-sided test, i.e., an algorithm that halts if the answer
is YES, but runs forever without reaching a conclusion if the answer is NO.

Lemma 8.11. There is an algorithm that takes as input k, p, X, a finite extension L of k,
and a finite list of cycles z1, . . . , zs ∈ Zp(XL), and halts if and only if the images of z1, . . . , zs
in NumpX are Z-independent.

Proof. Enumerate s-tuples (y1, . . . , ys) of elements of Zd−p(XL′) as L′ ranges over finite
extensions of L. As each s-tuple is computed, compute also the intersection numbers yi.zj ∈
Z and halt if det(yi.zj) 6= 0. �

Remark 8.12. If p = 1 and d = 2, and h is any ample divisor on X, and z is an integer
combination of the h and the zi, then the Hodge index theorem shows that the numerical
class of z is 0 if and only if z.h = 0 and z.zj = 0 for all j; thus the independence in
Lemma 8.11 can be tested by calculating intersection numbers of already-known divisors
without having to search for elements yi. If p = 1 and d > 2, and we assume the Hodge
standard conjecture [Gro69, Section 4, Conjecture Hdg(X)], then the numerical class of z
is 0 if and only if z.hd−1 = 0 and z.zj.h

d−2 = 0 for all j; thus again the search for the yj is
unnecessary, conjecturally. A similar argument applies for higher p if we assume not only the
Hodge standard conjecture but also that an algebraic cycle λ as in the Lefschetz standard
conjecture [Gro69, Section 3, Conjecture B(X)] can be found algorithmically so that one can
compute the primitive decomposition of z and the zj before computing intersection numbers.

Remark 8.13. In Lemma 8.11, if L is separable over k, then it would be the same to ask for
independence in NumpXsep, by Proposition 6.1(a).

Corollary 8.14. There is an algorithm that takes as input k, p, and X, and that when
left running forever, prints out an infinite sequence of nonnegative integers whose maximum
equals rk NumpXsep.

Proof. Enumerate finite s-tuples (z1, . . . , zs) of elements of Zp(XL) for all s ≥ 0 and all finite
separable extensions L of k, and run the algorithm of Lemma 8.11 (using Remark 8.13) on
all of them in parallel, devoting a fraction 2−i of the algorithm’s time to the ith process.
Each time one of the processes halts, print its value of s. �
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Theorem 8.15 (Computing NumpXsep).

(a) Assume Hypothesis 7.4. Then there is an algorithm that takes as input (k,X, p, `) as in
Setup 5.1 such that, assuming Ep(X, `),
• the algorithm terminates if and only if Tp(X, `) holds, and
• if the algorithm terminates, it returns rk NumpXsep.

(b) There is an unconditional algorithm that takes k, p, X, and a nonnegative integer ρ as
input, and computes the following assuming that ρ = rk NumpXsep:

(i) a finitely generated torsion-free Gk-module N having a Gk-equivariant injection
NumpXsep ↪→ N with finite cokernel,

(ii) the composition Zp(Xsep)→ NumpXsep ↪→ N in the sense of Definition 7.1, and
(iii) the rank of NumpX.

Proof.

(a) Let `′ be as in Section 4. Use Hypothesis 7.4 to compute T`′ . Replace k by a finite Galois
extension to assume that Gk acts trivially on T`′ . Let M and r be as in Section 5.

Use the algorithm of Proposition 8.3 to compute an integer t such that `tTtors = 0.
By day, use Hypothesis 7.4 to compute the groups T`n for n = t + 1, t + 2, . . ., and
the upper bounds blog #TG`n/ log `n−tc on r given by Lemma 5.5(c). By night, compute
lower bounds on rk NumpXsep as in Corollary 8.14. Stop if the bounds ever match,
which happens if and only if equality holds in the inequality rk NumpXsep ≤ r, which by
Proposition 7.13 happens if and only if Tp(X, `) holds. In this case, we have computed
rk NumpXsep.

(b) (i) Search for a finite Galois extension k′ of k, for p-cycles y1, . . . , ys, and for codi-
mension p cycles z1, . . . , zt over k′ until the intersection matrix (yi.zj) has rank ρ.
The assumption ρ = rk NumpXsep guarantees that such k′, yi, zj will be found
eventually. Let Y be the free abelian group with basis equal to the set consisting of
the yi and their Galois conjugates, so Y is a Gk-module. The intersection pairing
defines a homomorphism φ : NumpXsep → HomZ(Y,Z) whose image has rank equal
to ρ = rk NumpXsep. Since NumpXsep is torsion-free, φ is injective. Compute the
saturation N of the Z-span of φ(z1), . . . , φ(zs) in HomZ(Y,Z). Because of its rank,
N equals the saturation of φ(NumpXsep). Thus N is a finitely generated torsion-
free Gk-module containing a finite-index Gk-submodule φ(NumpXsep) isomorphic
to NumpXsep.

(ii) Given z ∈ Zp(XL) for some finite separable extension L of k′, computing its inter-
section number with each basis element of Y yields the image of z in N .

(iii) Because of Proposition 6.1(b), rk NumpX = rkNGk , which is computable. �

Remark 8.16. If we can bound the exponent of Ttors = H2p(Xsep,Z`)tors without using Propo-
sition 8.3, then Theorem 8.15(a) requires Hypothesis 7.4 only for i = 2p. In particular, this
applies if char k = 0 or if char k > 0 and X lifts to characteristic 0, by Remark 8.6. Actually,
if char k = 0, we do not need Hypothesis 7.4 at all, because Theorem 7.9 says that it is true!

Remark 8.17. The analogue of Theorem 8.15 with Xsep replaced by X also holds, as we
now explain. By Proposition 6.1(c), NumpXsep is of finite index in NumpX, so in the
proof of Theorem 8.15(b)(i), the homomorphism φ extends to a GK-equivariant injective
homomorphism φ : NumpX → HomZ(Y,Z). Because of finite index, the image of φ is
contained in the N defined there. The cokernel of NumpX → N is finite.
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Remark 8.18. For each p ∈ {0, 1, . . . , d}, let Np be the N in Theorem 8.15(b)(i), and define
Qp := Np ⊗ Q. Then for any p, q ∈ Z≥0 with p + q ≤ d, we can compute a bilinear pairing
Qp × Qq → Qp+q that corresponds to the intersection pairing: indeed, each Qp is spanned
by classes of cycles, whose intersections in the Chow ring can be computed by an argument
similar to that used to prove Lemma 8.7.

8.3. Checking algebraic equivalence of divisors.

Lemma 8.19. There is an algorithm that takes as input k, X, a finite extension L of k,
and an element z ∈ Z1(XL), and halts if and only if z is algebraically equivalent to 0.

Proof. Enumerate all possible descriptions of an algebraic family of divisors on XL with a
pair of L-points of the base (it is easy to check when such a description is valid), and check
for each whether the difference of the cycles corresponding to the two points equals z. �

Lemma 8.20. There is an algorithm that takes as input k, X, a finite extension L of k and
z ∈ Z1(XL), and decides whether z lies in Z1(XL)τ , i.e., whether the Néron–Severi class of
z is torsion, i.e., whether z is numerically equivalent to 0.

Proof. By day, search for a positive integer n and a family of divisors showing that nz is
algebraically equivalent to 0. By night, run the algorithm of Lemma 8.11 for s = 1, which
halts if and only if the image of z in Num1X is nonzero, i.e., if and only if z /∈ Z1(XL)τ .
One of these processes will halt. �

8.4. Computing the Néron–Severi group. In this section, k is an arbitrary field.

Lemma 8.21.

(a) Let X be a nice k-variety. There exists a divisor B ∈ Z1
X/k such that for any ample

divisor D, the class of D +B is very ample.
(b) There is an algorithm that takes as input a finitely generated field k and a k-variety X

and computes a B as in (a).

Proof. Let K be a canonical divisor on X (this is computable if k is finitely generated).
Let A be a very ample divisor on X (e.g., embed X in some projective space, and choose a
hyperplane section). By [Kee08, Theorem 1.1(2)], B := K + (dimX + 1)A has the required
property. �

Given an effective Cartier divisor of X, we have an associated closed subscheme Y ⊆ X.
Call a closed subscheme Y ⊆ X a divisor if it arises this way. When we speak of the Hilbert
polynomial of an effective Cartier divisor on a closed subscheme X of Pn, we mean the
Hilbert polynomial of the associated closed subscheme of X.

Lemma 8.22. There is an algorithm that takes as input a finitely generated field k, a closed
subscheme X ⊆ Pnk , and an effective divisor D ⊂ X, and computes the Hilbert polynomial of
D.

Proof. This is evident already from [Her26, Satz 2], which can be applied repeatedly to
construct a minimal free resolution of OD. �

Let HilbX =
⋃
P HilbP X denote the Hilbert scheme of X, where P ranges over polyno-

mials in Q[t].
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Lemma 8.23. There is an algorithm that takes as input a finitely generated field k, a closed
subscheme X ⊆ Pnk , and a polynomial P ∈ Q[t], and computes the universal family Y →
HilbP X.

Proof. This is a consequence of work of Gotzmann. Let S =
⊕

d≥0 Sd := k[x0, . . . , xn],
so ProjS = Pnk . Given d, r ∈ Z≥0, let Grr(Sd) be the Grassmannian parametrizing r-
dimensional subspaces of the k-vector space Sd. Then [Got78, §3] (see also [IK99, Theo-
rem C.29 and Corollary C.30]) specifies d0 ∈ Z≥0 such that for d ≥ d0, one can compute
r ∈ Z≥0 and a closed subscheme W ⊆ Grr(Sd) such that W ' HilbP Pn; under this isomor-
phism a subspace V ⊆ Sd corresponds to the subscheme defined by the ideal IV generated
by the polynomials in V . Moreover, IV and its saturation have the same dth graded part
(see [IK99, Corollary C.18]).

Let f1, . . . , fm be generators of a homogeneous ideal defining X. Choose d ∈ Z such
that d ≥ d0 and d ≥ deg fi for all i. Let g1, . . . , gM be all the polynomials obtained by
multiplying each fi by all monomials of degree d − deg fi. By the saturation statement
above, Proj(S/IV ) ⊆ X if and only if gj ∈ V for all j. This lets us construct HilbP X as an
explicit closed subscheme of HilbP Pn. Now HilbP X is known as an explicit subscheme of
the Grassmannian, so we have explicit equations also for the universal family over it. �

Lemma 8.24. Let X be a nice k-variety. There exists an open and closed subscheme
EffDivX ⊆ HilbX such that for any field extension L ⊇ k and any s ∈ (HilbX)(L), the
closed subscheme of XL corresponding to s is a divisor on XL if and only if s ∈ EffDivX(L).

Proof. See [BLR90, p. 215] for the definition of the functor EffDivX (denoted there by
DivX/S for S = Spec k) and its representability by an open subscheme of HilbX. To see that
it is also closed, we apply the valuative criterion for properness to the inclusion EffDivX →
HilbX: if a k-scheme S is the spectrum of a discrete valuation ring and Z is a closed
subscheme of X × S that is flat over S and the generic fiber Zη of Z → S is a divisor, then
Z equals the closure of Zη in X × S, which is an effective Weil divisor on X × S and hence
a relative effective Cartier divisor since X × S is regular. �

The existence of the scheme EffDivX in Lemma 8.24 immediately implies the following.

Corollary 8.25. Let X be a nice k-variety. Let Y be a closed subscheme of X. Let L be a
field extension of k. Then Y is a divisor on X if and only if YL is a divisor on XL.

Remark 8.26. Corollary 8.25 holds more generally for any finite-type k-scheme X, as follows
from fpqc descent applied to the ideal sheaf of YL ⊆ XL.

Lemma 8.27. There is an algorithm that takes as input a finitely generated field k, a smooth
k-variety X, and a closed subscheme Y ⊆ X, and decides whether Y is a divisor in X.

Proof. By [EGA IV4, Proposition 21.7.2] or [Eis95, Theorem 11.8a.], Y is a divisor if and
only if all associated primes of Y are of codimension 1 in X. So choose an affine cover
(Xi) of X, compute the associated primes of the ideal of Y ∩Xi in Xi for each i (the first
algorithm was given in [Her26]), and check whether they all have codimension 1 in Xi (a
modern method for computing dimension uses that the Hilbert polynomial of an ideal equals
the Hilbert polynomial of an associated initial ideal, which can be computed from a Gröbner
basis). �
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Lemma 8.28. Let π : H → P be a proper morphism of schemes of finite type over a field
k. Suppose that the fibers of π are connected (in particular, nonempty). Then π induces a
bijection on connected components.

Proof. Let H1, . . . , Hn be the connected components of H. Let Pi := π(Hi), so Pi is con-
nected. Since π is proper, the Pi are closed. Since the fibers of π are connected, the Pi are
disjoint. Since the fibers are nonempty,

⋃
Pi = P . Since the Pi are finite in number, they

are open too, so they are the connected components of P . �

Let π : EffDivX → PicX/k be the proper morphism sending a divisor to its class. If
PiccX/k is a finite union of connected components of PicX/k and L is a field extension of k,

let PiccXL be the set of classes in PicXL such that the corresponding point of
(
PicX/k

)
L

lies in
(
PiccX/k

)
L
, and let NScXL be the image of PiccXL in NSXL.

Lemma 8.29.

(a) Let X be a nice k-variety. Let PiccX/k be any finite union of connected components of
PicX/k. Assume the following:

For every field extension L ⊇ k, every divisor on XL with class in PiccXL

is linearly equivalent to an effective divisor.
(8.30)

Let H := π−1(PiccX/k). Then π : H(L)→ PicXL induces a bijection

{connected components of HL that contain an L-point} −→ NScXL. (8.31)

(b) For any PiccX/k as in (a), there is a divisor F on X such that the translate F + PiccX/k
satisfies (8.30).

(c) There is an algorithm that takes as input a finitely generated field k, a nice k-variety X,
a divisor D ∈ Z1(X), and a positive integer e, and computes the following for PiccX/k
defined as the (possibly empty) union of components of PicX/k corresponding to classes

of divisors E over k such that eE is numerically equivalent to D:
(i) a divisor F as in (b) for PiccX/k,

(ii) the variety H in (a) for F + PiccX/k,
(iii) the universal family Y → H of divisors corresponding to points of H,
(iv) a finite separable extension k′ of k and a finite subset S ⊆ Z1(Xk′) such that

there exists a k-homomorphism k′ ↪→ ksep such that the composition Z1(Xk′) →
Z1(Xsep)→ NSXsep restricts to a bijection S → NScXsep.

Proof.

(a) Taking L = k in (8.30) shows that H
π→ PiccX/k is surjective. The fibers of π : H(L) →

PiccXL are linear systems, and are nonempty by (8.30), so the reduced geometric fibers of
π : H → PiccX/k are projective spaces. In particular, πL : HL →

(
PiccX/k

)
L

has connected
fibers, so by Lemma 8.28, it induces a bijection on connected components. Under this
bijection, the connected components of HL that contain an L-point map to the connected
components of

(
PiccX/k

)
L

containing the class of a divisor over L. The set of the latter
components is NScXL.

(b) Let A be an ample divisor on X. For each of the finitely many geometric components C
of PiccX/k, choose a divisor DC on Xk whose class lies in C, and let nC ∈ Z be such that
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nCA + DC is ample. Let n = maxnC , so nA + DC is ample for all C. Let B be as in
Lemma 8.21(a). Let F = B+nA. If L is a field extension of k and E is a divisor on XL

with class in PiccXL, let C be the geometric component containing the class of EL (for
some compatible choice of k ⊆ L); then E is numerically equivalent to D, so nA+ E is
ample too, so F +E = B + (nA+E) is very ample by choice of B, so F +E is linearly
equivalent to an effective divisor.

(c) Fix a projective embedding of X, and let A be a hyperplane section.
(i) Let n ∈ Z>0 be such that nA+D is ample. (To compute such an n, try n = 1, 2, . . .

until |nA+D| determines a closed immersion.) Compute B as in Lemma 8.21(b).
Let F = B + nA. Suppose that L is an extension of k and E is a divisor on
XL such that eE is numerically equivalent to D. Then e(nA + E) is numerically
equivalent to enA+D = (e− 1)nA+ (nA+D), which is a positive combination of
the ample divisors A and nA+D, so nA+E is ample. By choice of B, the divisor
F + E = B + (nA+ E) is very ample and hence linearly equivalent to an effective
divisor.

(ii) By the Riemann–Roch theorem, the Euler characteristic χ(F + sD+ tA) is a poly-
nomial f(s, t) of total degree at most d := dimX. For any s ∈ Z, we can com-
pute t ∈ Z such that F + sD + tA is linearly equivalent to an effective divisor,
whose Hilbert polynomial can be computed by Lemma 8.22, so the polynomial
χ(F + sD+ tA) can be found by interpolation. Let P (t) := f(1/e, t). Compute the
universal family Y → HilbP X as in Lemma 8.23.
Suppose that E is such that eE is numerically equivalent to D. Then the poly-
nomial χ(F + sE + tA) equals f(s/e, t) since its values match whenever e|s. In
particular, χ(F +E+ tA) = P (t); i.e., P (t) is the Hilbert polynomial of an effective
divisor linearly equivalent to F+E. Thus the subscheme H ⊆ EffDivX ⊆ HilbX is
contained in HilbP X, which is a union of connected components of HilbX. By defi-
nition, H is a union of connected components of EffDivX , which by Lemma 8.24 is a
union of connected components of HilbX, so H is a union of connected components
of HilbP X. To compute H, compute the (finitely many) connected components of
HilbP X; to check whether a component C belongs to H, choose a point h in C over
some extension of k, apply Lemma 8.27 to Yh to test whether Yh is a divisor, and
if so, apply Lemma 8.20 to eYh−D to check whether eYh is numerically equivalent
to D.

(iii) Compute Y → H as the part of Y → HilbP X above H.
(iv) Compute the connected components of Hksep , which really means computing a

finite separable extension k′ and the connected components of Hk′ such that these
components are geometrically connected. For each connected component C of Hk′ ,
use the algorithm of [Har88] to decide whether it has a ksep-point, and, if so, choose
a k′-point h of C, enlarging k′ if necessary, and take the fiber Yh. Let S be the set
of such divisors Yh, one for each component C with a ksep-point. By (a), the map
S → NSXsep is a bijection onto NScXsep. �

Theorem 8.32 (Computing (NSXsep)tors). There is an algorithm that takes as input a
finitely generated field k and a nice k-variety X, and computes the Gk-homomorphism
Z1(Xsep)τ → (NSXsep)tors sending a divisor to its Néron–Severi class, in the sense of Defi-
nition 7.1 and Remark 7.2.
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Proof. Apply Lemma 8.29(c) with D = 0 and e = 1 to obtain a finite Galois extension k′ and
a subset D ⊆ Z1(Xk′) mapping bijectively to (NSXsep)tors. For each pair D1, D2 ∈ D, run
Lemma 8.19 in parallel on D1 +D2 −D3 for all D3 ∈ D to find the unique D3 algebraically
equivalent to D1 +D2; this determines the group law on D. Similarly compute the Gk-action.
Similarly, given a finite separable extension L of k′ and z ∈ Z1(XL)τ , we can find the unique
D ∈ D algebraically equivalent to z. �

If D ⊆ Z1(Xksep), let (NSXsep)D be the saturation of the Gk-submodule generated by the
image of D in NSXsep, and let Z1(Xsep)D be the set of divisors in Z1(Xsep) whose algebraic
equivalence class lies in (NSXsep)D.

Theorem 8.33 (Computing NSXsep).

(a) Given a finitely generated field k, a nice k-variety X, a finite separable extension L
of k in ksep and a finite subset D ⊆ Z1(XL), we can compute the Gk-homomorphism
Z1(Xsep)D → (NSXsep)D in the sense of Definition 7.1 and Remark 7.2.

(b) There is an algorithm that takes as input k and X as above and a nonnegative integer
ρ, and computes the Gk-homomorphism Z1(Xsep) → (NSXsep) in the sense of Defini-
tion 7.1 and Remark 7.2 assuming that ρ = rk NSXsep.

Remark 8.34. Assume Hypothesis 7.4 and T1(X, `). (Conjecture E1(X, `) is proved.) Then
Theorem 8.15(a) lets us compute rk NSXsep, so Theorem 8.33(b) lets us compute NSXsep.
Recall also that Hypothesis 7.4 is true when restricted to characteristic 0 (Theorem 7.9) or
varieties that lift to characteristic 0 (Corollary 7.10).

Proof of Theorem 8.33.

(a) Enlarge L to assume that it is Galois over k, and replace D by the union of its Gal(L/k)-
conjugates. There exist D1, . . . , Dt ∈ D whose images in (Num1Xsep)⊗Q form a Q-basis
for the image of the span of D. Then there exist 1-dimensional cycles E1, . . . , Et on XL

such that det(Di.Ej) 6= 0 (the Ei exist over a finite extension of L, but can be replaced
by their traces down to L), and each D ∈ D has a positive integer multiple numerically
equivalent to an element of the Z-span of D. Search for such D1, . . . , Dt, E1, . . . , Et and
for numerical relations as above for each D ∈ D (use Lemma 8.20 to verify relations).
Let e := |det(Di.Ej)|. Let ∆ be the span of the image of D in Num1Xsep. Let ∆′ be
the saturation of ∆ in Num1Xsep. Then (∆′ : ∆) divides e. For each coset of e∆ in
∆, choose a representative divisor D in the Z-span of D, and check whether the set S
of Lemma 8.29(c) is nonempty to decide whether the numerical equivalence class of D
is in e∆′; if so, choose a divisor in S. The classes of these new divisors, together with
those of D1, . . . , Dt, generate ∆′. Moreover, we know the integer relations between all of
these, so we can compute integer combinations F1, . . . , Ft whose classes form a basis for
∆′. Then

(NSXsep)D ' (ZF1 ⊕ · · · ⊕ ZFt)⊕ (NSXsep)tors

as abelian groups, and (NSXsep)tors can be computed by Theorem 8.32.
The homomorphism Z1(Xsep)D → (NSXsep)D is computed as follows: given any

z ∈ Z1(Xsep)D (defined over some finite separable extension L′ of L in ksep), com-
pute an integer combination F of the Fi such that F.Ej = z.Ej for all j, and apply the
homomorphism of Theorem 8.32 to compute the class of z − F in (NSXsep)tors.
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Applying this to all conjugates of our generators of (NSXsep)D lets us compute the
Gk-action on our model of (NSXsep)D.

(b) Assuming that ρ = rk NSXsep, the algebraic equivalence classes of divisors D1, . . . , Dρ ∈
Z1(Xsep) form a Z-basis for a free subgroup of finite index in NSXsep if and only if there
exist 1-cycles E1, . . . , Eρ on Xsep such that det(Di.Ej) 6= 0. Search for a finite separable
extension L of k in ksep, divisors D1, . . . , Dρ ∈ Z1(XL), and 1-cycles E1, . . . , Eρ on XL

until such are found with det(Di.Ej) 6= 0. Then apply (a) to D := {D1, . . . , Dρ}. �

Remark 8.35. Theorems 8.32 and 8.33 hold for X instead of Xsep: the same proofs work,
except that we need an algorithm for deciding whether a variety has a k-point; fortunately,
this is even easier than deciding whether a variety has a ksep-point!

8.5. An alternative approach over finite fields. When k is a finite field, we can compute
rk NumpXsep without assuming Hypothesis 7.4, but still assuming Tp(X, `) and Ep(X, `).
The arguments in this section are mostly well-known.

The following is a variant of Theorem 8.15(a). Recall that for any (k,X, p, `) as in Setup 5.1
with k finite, we let Vµ denote the largest G-invariant subspace of V = H2p(Xsep,Q`(p)) on
which all eigenvalues of the Frobenius are roots of unity.

Theorem 8.36.

(a) There is an algorithm A that takes as input (k,X, p, `) as in Setup 5.1, with k a finite
field Fq, and returns dimVµ.

(b) There is an algorithm B that takes as input (k,X, p, `) as in Setup 5.1, with k a finite
field Fq, such that, assuming Ep(X, `),
• algorithm B terminates on this input if and only if Tp(X, `) holds, and
• if algorithm B terminates, it returns rk NumpXsep.

Proof.

(a) By Proposition 8.1 there is an algorithm that computes the zeta function ZX(T ) ∈ Q(T )
of X. Then dimVµ is the number of complex poles λ of ZX(T ) such that λ is a root of
unity times q−p, counted with multiplicity.

(b) Algorithm B first runs algorithm A to compute vµ := dimVµ, and then runs the algorithm
of Corollary 8.14 until it prints vµ, in which case algorithm B returns vµ. If Tp(X, `) and
Ep(X, `) hold, Proposition 7.13 implies that vµ equals rk NumpXsep, and the algorithm
of Corollary 8.14 eventually prints the latter, so algorithm B terminates with the correct
output.

Assume Ep(X, `). Proposition 7.13 implies that rk NumpXsep ≤ vµ with equality if
and only if Tp(X, `) holds. So if algorithm B terminates, then Tp(X, `) holds. �

Corollary 8.37. There is an algorithm to compute NSXsep (in the same sense as The-
orem 8.33(b)) and its subgroup NSX for any nice variety X over a finite field such that
T1(X, `) holds for some `.

Proof. Apply Theorem 8.36(b), using that Ep(X, `) holds for p = 1, to obtain rk NSXsep.
Then Theorem 8.33(b) lets us compute the Galois module NSXsep. By Proposition 6.2,
computing its Gk-invariant subgroup yields NSX. �

8.6. K3 surfaces. We now apply our results to K3 surfaces, to improve upon the results of
[Cha14] and [HKT13] mentioned in Section 2.
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Theorem 8.38. There is an unconditional algorithm to compute the Gk-module NSXsep

for any K3 surface X over a finitely generated field k of characteristic not 2. We can also
compute the group (NSXsep)Gk , in which NSX has finite index. If k is finite, we can compute
NSX itself.

Proof. By [Del81], K3 surfaces lift to characteristic 0. By [MP14, Theorem 1], T1(X, `)
holds for any K3 surface X over a finitely generated field k of characteristic not 2. Hence
Remark 8.34 lets us compute the Gk-module NSXsep. From this we obtain (NSXsep)Gk .
By Proposition 6.1, NSX is of finite index in (NSXsep)Gk . If k is finite, then NSX =
(NSXsep)Gk by Proposition 6.2. �

Remark 8.39. For K3 surfaces X over a finite field k of characteristic not 2, Corollary 8.37
yields another way to compute NSXsep, without lifting to characteristic 0, but still using
[MP14, Theorem 1].
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Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21,
Springer-Verlag, Berlin, 1990. MR1045822 (91i:14034) ↑8.4

[Cha13] François Charles, The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194 (2013),
no. 1, 119–145, DOI 10.1007/s00222-012-0443-y. MR3103257 ↑1

[Cha14] , On the Picard number of K3 surfaces over number fields, Algebra Number Theory 8
(2014), no. 1, 1–17, DOI 10.2140/ant.2014.8.1. MR3207577 ↑2, 8.6
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