TORUS ACTIONS AND COMBINATORICS

NATHAN ILTEN

Abstract

These are lecture notes for a "Tapas" course given at the Fields Institute in November, 2017.

1. Introduction

Definition 1.1. A complexity $k T$-variety is a normal variety X equipped with an effective action

$$
T \times X \rightarrow X
$$

where $T \cong\left(\mathbb{K}^{*}\right)^{m}$ and $k=\operatorname{dim} X-\operatorname{dim} T$.
Examples include:

- $k=0$: toric varieties. Everything is determined through combinatorics.
- $k=\operatorname{dim} X$: normal varieties with no additional structure.
- $X=G / P$ with T a maximal subtorus of G, e.g. $G(2,4)$ has a $T=\left(\mathbb{K}^{*}\right)^{3}$ action, hence is a complexity-one T-variety.
- Toric vector bundles \mathcal{E} over a toric variety X (studied by Klyachko, Payne, Hering, Smith, Di Rocco, etc).
- $X \hookrightarrow Y$ toric varieties with $X=V(f), f$ a homogeneous binomial of degree u. Perturbations of f lead to complexity-one T-varieties, where $T=u^{\perp}$ (studied by Altmann).

The goal of these lectures is to develop a pseudo combinatorial language to study T-varieties. This is the theory of p-divisors introduced by Altmann and Hausen.

Application I hope to cover:

- Rank two toric vector bundles are Mori Dream Spaces (first proven independently by J. Gonzalez and Hausen-Süß).

2. Motivation and Classical Cases

Notation: N and M are mutually dual lattices, $T=\operatorname{Spec} \mathbb{K}[M] \cong N \otimes \mathbb{K}^{*}$.
2.1. Affine toric varieties. For σ a rational polyhedral cone in $N_{\mathbb{R}}$,

$$
\begin{gathered}
\sigma^{\vee}=\left\{u \in M_{\mathbb{R}} \mid\langle v, u\rangle \geq 0 \forall v \in \sigma\right\} \\
X(\sigma)=\operatorname{Spec} \mathbb{K}\left[\sigma^{\vee} \cap M\right]
\end{gathered}
$$

is a normal toric variety of dimension equal to $\operatorname{rank} N$.
Example 2.1. For

we have the variety given by

$$
\operatorname{rank}\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right) \leq 1
$$

2.2. Good \mathbb{K}^{*} actions. In this situation, X is a normal affine variety, $T=\mathbb{K}^{*}$ with $X^{T}=\operatorname{Spec} \mathbb{K}$, or equivalently, $H^{0}\left(X, \mathcal{O}_{X}\right)^{T}=\mathbb{K}$. These varieties have been studied extensively by Demazure, Pinkham, and others.

Construction: Y a projective variety, D an ample \mathbb{Q}-divisor with Cartier multiple \rightsquigarrow

$$
X=\operatorname{Spec} \bigoplus_{k \in \mathbb{Z} \geq 0} H^{0}(Y, \mathcal{O}(k \cdot D)) \cdot \chi^{k}
$$

Theorem 2.2. X is a normal \mathbb{K}^{*}-variety of dimension $\operatorname{dim} Y+1$.
Example 2.3. Taking for example

$$
Y=\mathbb{P}^{1} \quad D=\frac{-1}{2} \cdot(\{0\}+\{1\})+\frac{3}{2} \cdot\{\infty\}
$$

leads to

$$
\bigoplus H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(k D)\right) \cdot \chi^{k}=\mathbb{K}\left[y(y-1) \chi^{2}, y^{2}(y-1) \chi^{2}, y^{2}(y-1)^{2} \chi^{3}\right]
$$

so X is cut out by $c^{2}=a b(b-a)$, i.e. a singularity of type D_{4}.
Exercise 2.4. Construct Y, D for other simple singularities, e.g. $A_{n}, D_{n}, E_{6}, E_{7}$, E_{8}.

Partial proof sketch for Theorem 2.2. Set

$$
A=\bigoplus A_{k}=\bigoplus H^{0}(\mathcal{O}(k \cdot D))
$$

Let m be such that $m D$ is very ample \rightsquigarrow

$$
\widetilde{A}=\bigoplus A_{m k}
$$

is the normalization of the coordinate ring of $Y \hookrightarrow \mathbb{P}^{n}$ via linear system $|m D|$.
Lemma 2.5. A is integrally closed.
Proof. It suffices to consider homogeneous elements in $Q(A)$ with homogeneous integral equations. For $f \in Q(A)$ integral over A of degree k, f^{m} will be integral over \widetilde{A}, which we know is integrally closed. Hence, $f^{m} \in A_{m k}$. Note

$$
s \in A_{k} \Longleftrightarrow \nu_{P}(s)+k c_{P} \geq 0
$$

where $D=\sum c_{P} \cdot P$. Thus,

$$
\begin{aligned}
& f^{m} \in A_{k m} \Longleftrightarrow \\
& \nu_{P}\left(f^{m}\right)+k m c_{P} \geq 0 \Longleftrightarrow \\
& \nu_{P}(f)+m c_{P} \geq 0 \Longleftrightarrow \\
& f \in A_{k} .
\end{aligned}
$$

Lemma 2.6. A is integral over \widetilde{A}.
Proof. $f \in A_{k}$ implies $f^{m} \in A_{m k} \subset \widetilde{A}$.
Now, for finite generation of A, find $s \in A$ such that $Q(\widetilde{A}[s])=Q(A)$ (any s in degree relatively prime to m suffices). Then A is the normalization of $\widetilde{A}[s]$, hence finite over \widetilde{A}, hence finitely generated.
2.3. Torsors. Consider a T-variety X with free T-action. In this situation, there is a good quotient $\pi: X \rightarrow Y=X / T$, and X comes with local trivializations $X_{\mid U} \cong U \times \operatorname{Spec} \mathbb{K}[M]$ compatible with the T-action, for $U \subset Y$.

For any $u \in M$, we get a line bundle $\mathcal{L}(u)=\pi_{*}\left(\mathcal{O}_{X}\right)_{u}$ on Y : using the above trivializations,

$$
\mathcal{L}(u)_{\mid U} \cong \mathcal{O}_{U} \cdot \chi^{u}
$$

Locally, we check

Lemma 2.7.

$$
\mathcal{L}(u) \otimes \mathcal{L}(w)=\mathcal{L}(u+w)
$$

and

$$
X=\operatorname{Spec}_{Y} \bigoplus_{u \in M} \mathcal{L}(u)
$$

Choosing a basis e_{1}, \ldots, e_{m} of M leads to line bundles $\mathcal{L}_{i}\left(e_{i}\right)$ encoding the information of X. Up to isomorphism, X only depends on the classes of the \mathcal{L}_{i}. Choosing Cartier divisors D_{i} such that $\mathcal{L}_{i} \cong \mathcal{O}\left(D_{i}\right)$ we obtain a linear map

$$
\begin{aligned}
\mathcal{D}: M & \rightarrow \text { CaDiv } Y \\
u & \mapsto \sum u_{i} D_{i}
\end{aligned}
$$

encoding X up to isomorphism. If $D_{i}=\sum c_{P, i} P$ where P are prime divisors, we can rewrite

$$
\mathcal{D}=\sum v_{P} P
$$

for $v_{P}=\sum c_{P, i} e_{i}^{*}$. Here, we are thinking of \mathcal{D} as a linear map via

$$
\mathcal{D}(u)=\sum\left\langle v_{P}, u\right\rangle \cdot P
$$

3. Polyhedral Divisors

The theory of polyhedral divisors presented here is due to Altman and Hausen AH06. Another reference is the survey AlP $^{+} 12$. This theory combines aspects of the three classical situations above.

Setup: σ is a pointed cone in $N_{\mathbb{R}}, Y$ is a normal semiprojective (projective over something affine) variety.

Definition 3.1. A polyhedral divisor on Y with tailcone σ is a "finite" formal sum

$$
\mathcal{D}=\sum_{P \subset Y} \mathcal{D}_{P} \cdot P
$$

where $P \subset Y$ are prime divisors, \mathcal{D}_{P} are polytopes in $N_{\mathbb{R}}$ with tailcone σ, and finite means that $\mathcal{D}_{P}=\sigma$ for all but finitely many P.

The tailcone of a polyhedron is its cone of unbounded directions:

Example 3.2. Take $Y=\mathbb{A}^{2}=\operatorname{Spec} \mathbb{K}[x, y], \sigma=0$,

$$
\Delta=\Delta_{0} \cdot V(y)+\Delta_{1} \cdot V(x-y)
$$

with

Polyhedral divisors determine piecewise linear maps

$$
\begin{aligned}
\sigma^{\vee} & \rightarrow \operatorname{Div}_{\mathbb{Q}} Y \\
u & \mapsto \sum_{P} \min \left\langle\mathcal{D}_{P}, u\right\rangle \cdot P .
\end{aligned}
$$

- All but finitely many coefficients are 0 .
- Well defined, since $\operatorname{tail}\left(\mathcal{D}_{P}\right)=\sigma$.

Compare this to the linear map from the torso example.

The map \mathcal{D} has an important property - it is convex:

$$
\mathcal{D}(u)+\mathcal{D}(v) \leq \mathcal{D}(u+v)
$$

Hence, we can construct a sheaf of \mathcal{O}_{Y}-algebras and associated schemes:

$$
\begin{aligned}
& \mathcal{O}(\mathcal{D}):= \bigoplus_{u \in \sigma^{\vee} \cap M} \mathcal{O}(\mathcal{D}(u)) \cdot \chi^{u} \\
& \widetilde{X}(\mathcal{D}):=\operatorname{Spec}_{Y} \mathcal{O}(\mathcal{D}) \\
& X(\mathcal{D}):=\operatorname{Spec} H^{0}(Y, \mathcal{O}(\mathcal{D})) .
\end{aligned}
$$

Example 3.4.

We would like for $X(\mathcal{D})$ to be a T-variety (whose dimension we can predict). For this, we need additional criteria:

Definition 3.5. \mathcal{D} is proper or a p-divisor if

- For all $u \in \sigma^{\vee} \cap M, \mathcal{D}(u)$ is \mathbb{Q}-Cartier and semiample, i.e. has a basepoint free multiple.
- For all $u \in\left(\sigma^{\vee} \cap M\right)^{\circ}, \mathcal{D}(u)$ is big, i.e. has a multiple admitting a section with affine complement.

Exercise 3.6. If Y is a curve, the \mathcal{D} is proper if and only Y is affine, or $\operatorname{deg} \mathcal{D} \subsetneq \sigma$ and for all $u \in M \cap \sigma^{\vee}$ with $u^{\perp} \cap \operatorname{deg} \mathcal{D} \neq \emptyset, \mathcal{D}(u)$ has a principal multiple. Here,

$$
\operatorname{deg} \mathcal{D}=\sum_{P} \mathcal{D}_{P}
$$

Theorem 3.7. AH06 We have the following:
(1) $X(\mathcal{D}), \widetilde{X}(\mathcal{D})$ are T-varieties of dimension $\operatorname{dim} Y+\operatorname{rank} M$.
(2) $\pi: \widetilde{X}(\mathcal{D}) \rightarrow Y$ is a good quotien ${ }^{11}$.
(3) $\phi: \widetilde{X}(\mathcal{D}) \rightarrow X(\mathcal{D})$ is proper and birational.

Proof sketch. First assume "easy" situation: σ the positive orthant, \mathcal{D} linear with $\mathcal{D}(u)$ Cartier \rightsquigarrow

$$
\mathcal{E}=\bigoplus_{i} \mathcal{O}\left(\mathcal{D}\left(e_{i}\right)\right)
$$

is a vector bundle. Then

$$
H^{0}(Y, \mathcal{E})=H^{0}\left(\mathbb{P}(\mathcal{E}), \bigoplus_{k \geq 0} \mathcal{O}_{\mathbb{P}(\mathcal{E})}(k)\right)
$$

and we can reduce to the simply graded case. Note that \mathcal{D} proper $\Longrightarrow \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ semiample.

For general situation, subdivide σ^{\vee} into simplices ω_{i} on which \mathcal{D} is linear; coarsening the lattice gives a finite cover of something in the above "easy" situation.

Theorem 3.8 (AH06). Every affine T-variety can be constructed as above.
We'll see part of a constructive proof of this below. The proof in AH06 makes use of GIT, which we will omit. However, I find the following alternative argument conceptually useful, albeit incomplete:

- Let X° be the open subset of X with finite stabilizers.
- X° has (non-separated) quotient Y.
- Over Y, X° is "almost" a torsor; can be represented by a linear $\mathcal{D}: M \rightarrow$ $\operatorname{CaDiv}_{\mathbb{Q}}(Y)$ (think of stack quotients and the root construction).
- Not all sections of \mathcal{O}_{X} 。 extend to X; this is governed by weight cone ω :

$$
X=\bigoplus_{u \in \omega \cap M} H^{0}(Y, \mathcal{O}(\mathcal{D}(u)))
$$

- Y is in general not separated; replacing Y by a separation leads to coefficients of \mathcal{D} which are more general polyhedra, not just translates of ω^{\vee}.

What is missing from this argument is that it is not entirely clear how to ensure that the resulting polyhedral divisor is proper.

The polyhedral divisor \mathcal{D} encodes the fibers of $\pi: \widetilde{X}(\mathcal{D}) \rightarrow Y$, which are (unions of) toric varieties. We'll see a few more details on this later.

[^0]
4. Toric Downgrades, Existence, and Uniqueness

4.1. Toric Downgrades. Let $X=X(\sigma)$ be an affine toric variety for a cone σ in $\tilde{N}_{\mathbb{R}}$. For a subtorus T of $\widetilde{T}=\widetilde{N} \otimes \mathbb{K}^{*}$, how do we describe X as a T-variety?

The inclusion $T \hookrightarrow \widetilde{T}$ corresponds to a surjection $\widetilde{M} \rightarrow M$. This leads to the following dual exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow N \underset{s}{\underset{\sim}{\rightleftarrows}} \tilde{N} \xrightarrow{q} \bar{N} \longrightarrow 0 \\
& 0 \longleftarrow M \underset{\longleftrightarrow}{\rightleftarrows} \widetilde{M} \widetilde{p^{*}} \underset{t}{\stackrel{q^{*}}{\longleftrightarrow}} \bar{M} \longleftarrow 0
\end{aligned}
$$

Here we have chosen a cosection s of p. This determines t via $t(u)=u-s^{*}\left(p^{*}(u)\right)$, viewed as an element of \bar{M}.

For $u \in M$, the degree u piece of $A=H^{0}\left(X, \mathcal{O}_{X}\right)$ is

$$
A_{u}=\bigoplus_{w \in\left(p^{*}\right)^{-1}(u) \cap \sigma^{\vee} \cap M} \chi^{w}
$$

Setting

$$
\Delta(u)=t\left(\left(p^{*}\right)^{-1}(u) \cap \sigma^{\vee}\right)
$$

we obtain

$$
A_{u} \cong \bigoplus_{w \in \Delta(u) \cap \bar{M}} \chi^{w}
$$

with these isomorphisms compatible with the ring structure (since t is additive)! As u ranges over M, only finitely many normal fans $\Sigma(\Delta(u))$ appear; let Σ be their coarsest common refinement. The $\Delta(u)$ represent semiample \mathbb{Q}-divisors on $X(\Sigma)$, and the map

$$
u \mapsto \Delta(u)
$$

is piecewise linear and convex, hence corresponds to a p-divisor \mathcal{D} on $X(\Sigma) \cdot{ }^{2}$
Example 4.1. Consider the cone σ whose rays are generated by the columns of

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right)
$$

[^1]Then σ^{\vee} has rays generated by the columns of

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

We can consider the subtorus $T=(0,0,1)^{\perp}$. We take the obvious choices for s and t.

Setting

$$
\begin{aligned}
\omega_{1} & =\mathbb{R}_{\geq 0}\{(1,0),(1,1)\} \\
\omega_{2} & =\mathbb{R}_{\geq 0}\{(1,0),(1,-1)\}
\end{aligned}
$$

we obtain

$$
\Delta(u)= \begin{cases}{\left[u_{2}-u_{1}, u_{1}-u_{2}\right]} & u \in \omega_{1} \\ {\left[-u_{1}-u_{2}, u_{1}+u_{2}\right]} & u \in \omega_{2}\end{cases}
$$

This leads to $Y=\mathbb{P}^{1}$ and

$$
\mathcal{D}=\Delta \cdot(\{0\}+\{\infty\})
$$

for

Exercise 4.2. Show that Σ is the fan obtained by considering the coarsest common refinement of the cones $p(\tau)$, where τ ranges over all faces of σ. Show that we can represent \mathcal{D} as

$$
\mathcal{D}=\sum_{\rho \in \Sigma^{(1)}} s\left(q^{-1}\left(v_{\rho}\right) \cap \sigma\right) \cdot D_{\rho}
$$

where v_{ρ} is the primitive generator of a ray ρ, and D_{ρ} the corresponding prime invariant divisor on $X(\Sigma)$.
4.2. General Affine T-Varieties. We can adapt the above setup to construct a p-divisor for any affine T-variety: If X is equivariantly embedded in $\left.\mathbb{A}^{n}\right]^{3}$ this gives in particular an embedding

$$
T \hookrightarrow\left(\mathbb{K}^{*}\right)^{n}=\widetilde{T}
$$

The above construction produces a quotient $X(\Sigma)$ with p-divisor \mathcal{D} describing \mathbb{A}^{n} as a T-variety.

Possibly passing to a smaller affine space, we can assume that $X^{\circ}:=X \cap \widetilde{T} \neq \emptyset$. Let Z be the closure of the image of X° in $X(\Sigma)$, and $\phi: Y \rightarrow Z$ its normalization.

Proposition 4.3. We have that

$$
\mathcal{D}^{\prime}=\phi^{*}\left(\mathcal{D}_{\mid Z}\right)
$$

is a p-divisor, and

$$
X\left(\mathcal{D}^{\prime}\right)=X
$$

Proof. The claim that \mathcal{D}^{\prime} is a p-divisor is straightforward. For the second claim, one needs to use a bit of GIT AH06.
4.3. Uniqueness. How much choice does one have in representing a T-variety X by a p-divisor \mathcal{D} ? The answer given by AH06] is that \mathcal{D} is uniquely determined up to three different kinds of equivalences:

- For $\phi: Y^{\prime} \rightarrow Y$ proper and birational, \mathcal{D} a p-divisor on $Y, \phi^{*}(\mathcal{D})$ is the p-divisor given by $\phi^{*}(\mathcal{D})(u)=\phi^{*}(\mathcal{D}(u))$. Then we have $X(\mathcal{D}) \cong X\left(\phi^{*}(\mathcal{D})\right)$, since sections don't change under ϕ^{*}.
- For a lattice automorphism $\rho \in \operatorname{Aut}(M)$,

$$
\rho(\mathcal{D})=\sum \rho\left(\mathcal{D}_{P}\right) \cdot P
$$

is a p-divisor on Y, and $X(\mathcal{D}) \cong X(\rho(\mathcal{D}))$.

[^2]- For $\mathfrak{f} \in N \otimes \mathbb{K}(Y)^{*}$, let div \mathfrak{f} be the principal polyhedral divisor given by

$$
(\operatorname{div} \mathfrak{f})(u)=\operatorname{div}(\mathfrak{f}(u))
$$

Then $X(\mathcal{D}) \cong X(\mathcal{D}+\operatorname{div} \mathfrak{f})$, with isomorphism induced by $\chi^{u} \mapsto \mathfrak{f}(u)^{-1} \chi^{u}$.
It is a theorem of AH06 that, up to these three equivalences, the p-divisor for X is uniquely determined. Moreover, one can similarly define a category of p-divisors, and show that it is equivalent to the category of normal affine varieties with torus action.

5. The Non-Affine Case

5.1. Divisorial Fans. We now wish to globalize our combinatorial description of T-varieties to the non-affine case. This has been done in AHS08. The basic idea is to glue $X(\mathcal{D})$ together for some nice set \mathcal{S} of polyhedral divisors.

A necessary change: we now allow \emptyset as a coefficient for a polyhedral divisor \mathcal{D}. For \mathcal{D} on Y,

$$
\operatorname{Loc} \mathcal{D}=Y \backslash \bigcup_{P \mid \mathcal{D}_{P}=\emptyset}^{\bigcup} P
$$

The polyhedral divisor \mathcal{D} restricts to a "usual" polyhedral divisor $\mathcal{D}_{\mid \text {Loc } \mathcal{D}}$, and is proper exactly when this restriction is.

Example 5.1. For Y a projective curve, \mathcal{D} a p-divisor on $Y, \operatorname{deg} \mathcal{D}=\emptyset \Longleftrightarrow$ $\operatorname{Loc} \mathcal{D}$ is affine.

Let $\mathcal{D}, \mathcal{D}^{\prime}$ be polyhedral divisors on Y.

- $\mathcal{D} \subset \mathcal{D}^{\prime} \Longleftrightarrow \mathcal{D}_{P} \subset \mathcal{D}_{P}^{\prime}$ for all prime divisors P.
- $\mathcal{D} \cap \mathcal{D}^{\prime}=\sum_{P} \mathcal{D}_{P} \cap \mathcal{D}_{P}^{\prime} \cdot P$

Note that

$$
\mathcal{D} \subset \mathcal{D}^{\prime} \Longrightarrow \mathcal{D}(u) \geq \mathcal{D}^{\prime}(u) \Longrightarrow \mathcal{O}\left(\mathcal{D}^{\prime}\right) \subset \mathcal{O}(\mathcal{D})
$$

in which case we obtain a dominant morphism

$$
X(\mathcal{D}) \rightarrow X\left(\mathcal{D}^{\prime}\right) .
$$

Definition 5.2. \mathcal{D} is a face of $\mathcal{D}^{\prime}\left(\mathcal{D} \prec \mathcal{D}^{\prime}\right)$ if and only if this morphism is an open embedding.

Remark 5.3. $\mathcal{D} \prec \mathcal{D}^{\prime}$ implies that for all P, \mathcal{D}_{P} is a face of $\mathcal{D}_{P}^{\prime}\left(\mathcal{D}_{P} \prec \mathcal{D}_{P}^{\prime}\right)$. However, the converse is not true.

Example 5.4. Consider \mathcal{D} and \mathcal{D}^{\prime} as pictured. This describes a downgrade of the dominant toric morphism $\mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ coming from blowing up \mathbb{A}^{2} at the origin. Despite $\mathcal{D}_{P} \prec \mathcal{D}_{P}^{\prime}$ for all P, this is not an open embedding.

There is an explicit (and ugly criterion) for in general when $\mathcal{D} \prec \mathcal{D}^{\prime}$. In complexity-one, it simplifies:

Proposition 5.5 ([IS11]). On a projective curve $Y, \mathcal{D} \prec \mathcal{D}^{\prime} \Longleftrightarrow \operatorname{deg} \mathcal{D}=$ tail $\mathcal{D} \cap \operatorname{deg} \mathcal{D}^{\prime}$.

Definition 5.6. A divisorial fan on Y is a finite set \mathcal{S} of p-divisors, closed under intersection, such that for all $\mathcal{D}, \mathcal{D}^{\prime} \in \mathcal{S}$,

$$
\mathcal{D} \cap \mathcal{D}^{\prime} \prec \mathcal{D}, \mathcal{D}^{\prime}
$$

Construction:

$$
X(\mathcal{S})=\coprod_{\mathcal{D} \in \mathcal{S}} X(\mathcal{D}) / \sim
$$

where glueing is done along

$$
X(\mathcal{D}) \longleftrightarrow X\left(\mathcal{D} \cap \mathcal{D}^{\prime}\right) \longleftrightarrow X\left(\mathcal{D}^{\prime}\right)
$$

Theorem 5.7. AHS08 Every T-variety can be constructed in this way.

Proof. Sumihiro's theorem plus valuative criterion for separatedness.

Remark 5.8. For all P,

$$
\mathcal{S}_{P}=\left\{\mathcal{D}_{P} \mid \mathcal{D} \in \mathcal{S}\right\}
$$

forms a polyhedral complex called the slice of \mathcal{S} at P.

Example 5.9. $X=\mathbb{P}\left(\Omega_{\mathcal{F}_{1}}\right)$.

We need to know which coefficients belong to a common p-divisor. Here, all fulldimensional coefficients with common tailcone belong together.
5.2. Divisors and Global Sections. Here we follow PS11]. The setup is a divisorial $\operatorname{fan} \mathcal{S}$ on Y, leading to

T-invariant prime divisors on $\widetilde{X}(\mathcal{S})$ come in two types:

- Vertical: components of $\pi^{-1}(P)$ for prime $P \subset Y$. Correspond to vertices $v \in \mathcal{S}_{P} \rightsquigarrow D_{P, v}$.
- Horizontal: image covers all of Y. Correspond to rays ρ of $\operatorname{tail}(\mathcal{S})=\mathcal{S}_{\eta}$, for $\eta \in Y$ a general point $\rightsquigarrow D_{\rho}$.
To see this, one can take a \log resolution of Y, after which $\widetilde{X}(\mathcal{S}) \rightarrow Y$ comes étale locally from a toric downgrade with fan Σ. Rays of Σ in "height zero" give rays of tail \mathcal{S}, whereas other rays give vertices in slices of \mathcal{S}.

The prime invariant divisors of $X(\mathcal{S})$ are all images of prime invariant divisors of $X(\mathcal{S})$. In general, some of these get contracted by ϕ. In the case of complexity one, only divisors of the form D_{ρ} may be contracted.

Proposition 5.10. Given $f \in \mathbb{K}(Y)$,

$$
\operatorname{div}\left(f \cdot \chi^{u}\right)=\sum_{P, v} \mu(v)\left(\nu_{P}(f)+\langle v, u\rangle\right) D_{P, v}+\sum_{\rho}\left\langle v_{\rho}, u\right\rangle D_{\rho}
$$

where $\nu_{P}(f)$ is the order of vanishing of f along $P, \mu(v)$ is the smallest natural number such that $\mu(v) v \in N$, and v_{ρ} is the primitive lattice generator of ρ.

Proof. After assuming $\widetilde{X}(\mathcal{S}) \rightarrow Y$ is (locally) toric, this follows from the classical toric formula.

This leads to a formula for global sections of divisors. Let $D=\sum a_{P, v} \mu(v) D_{p, v}+$ $\sum a_{\rho} D_{\rho}$ be a T-invariant divisor on $X(\mathcal{S})$. Define

$$
\begin{aligned}
\square^{D} & =\left\{u \in M_{\mathbb{R}} \mid\left\langle v_{\rho}, u\right\rangle+a_{\rho} \geq 0\right\} \\
\Psi_{P}^{D}(u) & =\min _{v \in \mathcal{S}_{P}^{(0)}}\left(a_{P, v}+\langle v, u\rangle\right) \\
\Psi^{D}: \square^{D} & \rightarrow \operatorname{Div}_{\mathbb{Q}} Y \\
u & \mapsto \sum_{P} \Psi_{P}^{D}(u) P
\end{aligned}
$$

Proposition 5.11. We have a graded isomorphism

$$
H^{0}(X(\mathcal{S}), \mathcal{O}(D))=\bigoplus_{u \in \square^{D} \cap M} H^{0}\left(Y, \mathcal{O}\left(\Psi^{D}(u)\right)\right)
$$

Proof. Given $f \cdot \chi^{u} \in \mathbb{K}(X)$, the D_{ρ} coefficient of $\operatorname{div}(f)+D$ is non-negative if and only if $\left\langle v_{\rho}, u\right\rangle+a_{\rho} \geq 0$. The $D_{P, v}$ coefficient is non-negative if and only if $\langle v, u\rangle+\nu_{P}(f)+a_{P, v} \geq 0$.

Example 5.12. We consider the divisor

$$
D=D_{0,(0,0)}+D_{0,(0,1)}+D_{0,(0,-1)}+D_{1,(0,0)}+D_{1,(1,0)} .
$$

This is an anticanonical divisor on this variety. This leads to

$$
\begin{aligned}
\Psi_{0}^{D}(u) & = \begin{cases}1-u_{2} & u_{2} \geq 0 \\
1+u_{2} & u_{2} \leq 0\end{cases} \\
\Psi_{1}^{D}(u) & = \begin{cases}1 & u_{1} \geq 0 \\
1+u_{1} & u_{1} \leq 0\end{cases} \\
\Psi_{\infty}^{D}(u) & = \begin{cases}0 & u_{1} \leq u_{2} \\
u_{2}-u_{1} & u_{2} \leq u_{1}\end{cases}
\end{aligned}
$$

and e.g.

$$
H^{0}(\mathcal{O}(D))_{(-2,0)} \cong H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(\{0\}-\{1\})\right)
$$

The weights in which H^{0} is supported are pictured below:

6. Cox Rings

Let X be a smooth projective variety with $\operatorname{Pic}(X) \cong \mathbb{Z}^{n}$. After choosing representatives $D_{1}, \ldots, D_{n} \in \operatorname{Div}(X)$ of a basis of $\operatorname{Pic}(X)$, we can define the Cox ring of X to be

$$
\operatorname{Cox}(X)=\bigoplus_{u \in \mathbb{Z}^{n}} H^{0}\left(X, \mathcal{O}\left(u_{1} D_{1}+\ldots+u_{n} D_{n}\right)\right)
$$

with multiplication given by the natural multiplication of sections ${ }_{-}^{4} X$ is a Mori Dream Space (MDS) if $\operatorname{Cox}(X)$ is finitely generated.

We will apply the tools we have developed to prove that smooth, rational complexityone T-varieties X are MDS. In particular, if \mathcal{E} is a rank two toric vector bundle over a smooth toric variety, $\mathbb{P}(\mathcal{E})$ is MDS. The first statement was originally proven in a much more general setting in HS10; the latter statement was proven independently by Gon12. The arguments we are using are from [V13]; similar arguments are used in AP12 to also include the singular case with torsion in the class group.

We fix our rational complexity-one T-variety $X(\mathcal{S})$; here we have $Y=\mathbb{P}^{1}$. We can choose the representatives D_{1}, \ldots, D_{n} to be T-invariant. Set $D(u)=\sum u_{i} D_{i}$. Then we obtain

$$
\begin{aligned}
\operatorname{Cox}(X) & =\bigoplus_{u \in \mathbb{Z}^{n}} H^{0}(X, D(u)) \\
& =\bigoplus_{u \in \mathbb{Z}^{n}} \bigoplus_{w \in M \cap \square(u)} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(\Psi(u))\right)=\bigoplus_{(u, w) \in \omega} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}\left(\Psi^{D(u)}(w)\right)\right)
\end{aligned}
$$

where ω is the cone in $\left(\mathbb{Z}^{n} \times M\right)_{\mathbb{R}}$ generated by $\left(u, \square^{D(u)}\right)$. The map

$$
\begin{aligned}
\mathcal{D}: \omega & \rightarrow \operatorname{Div}_{\mathbb{Q}}\left(\mathbb{P}^{1}\right) \\
(u, w) & \mapsto \Psi^{D(u)}(w)
\end{aligned}
$$

is piecewise-linear and convex, hence can be thought of as a polyhedral divisor! The one difficulty is that it might not be proper.

However, we can restrict \mathcal{D} to the closed subcone ω^{\prime} of ω on with the degree of \mathcal{D} is non-negative, since elsewhere $\mathcal{O}(\mathcal{D})$ has no sections. Since $Y=\mathbb{P}^{1}$, this is already enough to guarantee that $\mathcal{D}(u, w)$ is semiample for all $(u, w) \in \omega^{\prime}$. This in turn guarantees finite generation of the Cox ring.

[^3]Exercise 6.1. Given representatives D_{1}, \ldots, D_{n} as above, explicitly determine the coefficients of the polyhedral divisor \mathcal{D} describing the Cox ring.

7. Deformations
 References

[AH06] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions. Math. Ann., 334(3):557-607, 2006.
[AHS08] Klaus Altmann, Jürgen Hausen, and Hendrik Süss. Gluing affine torus actions via divisorial fans. Transform. Groups, 13(2):215-242, 2008.
[AIP $\left.{ }^{+} 12\right]$ Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert. The geometry of T-varieties. In Contributions to algebraic geometry, EMS Ser. Congr. Rep., pages 17-69. Eur. Math. Soc., Zürich, 2012.
[AP12] Klaus Altmann and Lars Petersen. Cox rings of rational complexity-one T-varieties. J. Pure Appl. Algebra, 216(5):1146-1159, 2012.
[Gon12] José Luis González. Projectivized rank two toric vector bundles are Mori dream spaces. Comm. Algebra, 40(4):1456-1465, 2012.
[HS10] Jürgen Hausen and Hendrik Süß. The Cox ring of an algebraic variety with torus action. Adv. Math., 225(2):977-1012, 2010.
[IS11] Nathan Owen Ilten and Hendrik Süss. Polarized complexity-1 T-varieties. Michigan Math. J., 60(3):561-578, 2011.
[IV13] Nathan Owen Ilten and Robert Vollmert. Upgrading and downgrading torus actions. J. Pure Appl. Algebra, 217(9):1583-1604, 2013.
[PS11] Lars Petersen and Hendrik Süss. Torus invariant divisors. Israel J. Math., 182:481-504, 2011.

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby BC V5A1S6, Canada

E-mail address: nilten@sfu.ca

[^0]: $1_{\text {i.e. an affine morphism locally given by taking invariants }}$

[^1]: ${ }^{2}$ The bigness criterion must also be checked, but is not difficult.

[^2]: ${ }^{3}$ This is possible by Sumihiro's theorem.

[^3]: ${ }^{4}$ More generally, one can define a Cox ring for singular X as long as the class group is finitely generated.

