TORUS ACTIONS AND COMBINATORICS

NATHAN ILTEN

ABSTRACT. These are lecture notes for a "Tapas" course given at the Fields Institute in November, 2017.

1. INTRODUCTION

Definition 1.1. A *complexity* k *T*-variety is a normal variety X equipped with an effective action

$$T \times X \to X$$

where $T \cong (\mathbb{K}^*)^m$ and $k = \dim X - \dim T$.

Examples include:

- k = 0: toric varieties. Everything is determined through combinatorics.
- $k = \dim X$: normal varieties with no additional structure.
- X = G/P with T a maximal subtorus of G, e.g. G(2, 4) has a $T = (\mathbb{K}^*)^3$ -action, hence is a complexity-one T-variety.
- Toric vector bundles \mathcal{E} over a toric variety X (studied by Klyachko, Payne, Hering, Smith, Di Rocco, etc).
- $X \hookrightarrow Y$ toric varieties with X = V(f), f a homogeneous binomial of degree u. Perturbations of f lead to complexity-one T-varieties, where $T = u^{\perp}$ (studied by Altmann).

The goal of these lectures is to develop a pseudo combinatorial language to study T-varieties. This is the theory of p-divisors introduced by Altmann and Hausen. Application I hope to cover:

• Rank two toric vector bundles are Mori Dream Spaces (first proven independently by J. Gonzalez and Hausen–Süß).

2. MOTIVATION AND CLASSICAL CASES

Notation: N and M are mutually dual lattices, $T = \operatorname{Spec} \mathbb{K}[M] \cong N \otimes \mathbb{K}^*$.

2.1. Affine toric varieties. For σ a rational polyhedral cone in $N_{\mathbb{R}}$,

$$\sigma^{\vee} = \{ u \in M_{\mathbb{R}} \mid \langle v, u \rangle \ge 0 \ \forall \ v \in \sigma \}$$

$$X(\sigma) = \operatorname{Spec} \mathbb{K}[\sigma^{\vee} \cap M]$$

is a normal toric variety of dimension equal to rank N.

Example 2.1. For

we have the variety given by

$$\operatorname{rank} \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 & x_4 \end{pmatrix} \le 1$$

2.2. **Good** \mathbb{K}^* actions. In this situation, X is a normal affine variety, $T = \mathbb{K}^*$ with $X^T = \text{Spec } \mathbb{K}$, or equivalently, $H^0(X, \mathcal{O}_X)^T = \mathbb{K}$. These varieties have been studied extensively by Demazure, Pinkham, and others.

 $Construction: \ Y \ {\rm a \ projective \ variety}, \ D \ {\rm an \ ample \ Q-divisor \ with \ Cartier \ multiple} \\ \rightsquigarrow$

$$X = \operatorname{Spec} \bigoplus_{k \in \mathbb{Z}_{\geq 0}} H^0(Y, \mathcal{O}(k \cdot D)) \cdot \chi^k.$$

Theorem 2.2. X is a normal \mathbb{K}^* -variety of dimension dim Y + 1.

Example 2.3. Taking for example

$$Y = \mathbb{P}^1 \qquad D = \frac{-1}{2} \cdot (\{0\} + \{1\}) + \frac{3}{2} \cdot \{\infty\}$$

leads to

$$\bigoplus H^0(\mathbb{P}^1, \mathcal{O}(kD)) \cdot \chi^k = \mathbb{K}[y(y-1)\chi^2, y^2(y-1)\chi^2, y^2(y-1)^2\chi^3]$$

so X is cut out by $c^2 = ab(b-a)$, i.e. a singularity of type D_4 .

Exercise 2.4. Construct Y, D for other simple singularities, e.g. A_n, D_n, E_6, E_7, E_8 .

Partial proof sketch for Theorem 2.2. Set

$$A = \bigoplus A_k = \bigoplus H^0(\mathcal{O}(k \cdot D)).$$

Let *m* be such that mD is very ample \rightsquigarrow

$$\widetilde{A} = \bigoplus A_{mk}$$

is the normalization of the coordinate ring of $Y \hookrightarrow \mathbb{P}^n$ via linear system |mD|.

Lemma 2.5. A is integrally closed.

Proof. It suffices to consider homogeneous elements in Q(A) with homogeneous integral equations. For $f \in Q(A)$ integral over A of degree k, f^m will be integral over \widetilde{A} , which we know is integrally closed. Hence, $f^m \in A_{mk}$. Note

$$s \in A_k \iff \nu_P(s) + kc_P \ge 0$$

where $D = \sum c_P \cdot P$. Thus,

$$f^m \in A_{km} \iff \nu_P(f^m) + kmc_P \ge 0 \iff \nu_P(f) + mc_P \ge 0 \iff f \in A_k.$$

Lemma 2.6. A is integral over \overline{A} .

Proof. $f \in A_k$ implies $f^m \in A_{mk} \subset \widetilde{A}$.

Now, for finite generation of A, find $s \in A$ such that $Q(\widetilde{A}[s]) = Q(A)$ (any s in degree relatively prime to m suffices). Then A is the normalization of $\widetilde{A}[s]$, hence finite over \widetilde{A} , hence finitely generated.

2.3. Torsors. Consider a *T*-variety *X* with free *T*-action. In this situation, there is a good quotient $\pi : X \to Y = X/T$, and *X* comes with local trivializations $X_{|U} \cong U \times \text{Spec } \mathbb{K}[M]$ compatible with the *T*-action, for $U \subset Y$.

For any $u \in M$, we get a line bundle $\mathcal{L}(u) = \pi_*(\mathcal{O}_X)_u$ on Y: using the above trivializations,

$$\mathcal{L}(u)_{|U} \cong \mathcal{O}_U \cdot \chi^u.$$

Locally, we check

Lemma 2.7.

$$\mathcal{L}(u) \otimes \mathcal{L}(w) = \mathcal{L}(u+w)$$

and

$$X = \operatorname{Spec}_Y \bigoplus_{u \in M} \mathcal{L}(u).$$

Choosing a basis e_1, \ldots, e_m of M leads to line bundles $\mathcal{L}_i(e_i)$ encoding the information of X. Up to isomorphism, X only depends on the classes of the \mathcal{L}_i . Choosing Cartier divisors D_i such that $\mathcal{L}_i \cong \mathcal{O}(D_i)$ we obtain a linear map

$$\mathcal{D}: M \to \operatorname{CaDiv} Y$$

 $u \mapsto \sum u_i D_i$

encoding X up to isomorphism. If $D_i = \sum c_{P,i}P$ where P are prime divisors, we can rewrite

$$\mathcal{D} = \sum v_P P$$

for $v_P = \sum c_{P,i} e_i^*$. Here, we are thinking of \mathcal{D} as a linear map via

$$\mathcal{D}(u) = \sum \langle v_P, u \rangle \cdot P.$$

3. Polyhedral Divisors

The theory of polyhedral divisors presented here is due to Altmann and Hausen [AH06]. Another reference is the survey [AIP⁺12]. This theory combines aspects of the three classical situations above.

Setup: σ is a pointed cone in $N_{\mathbb{R}}$, Y is a normal semiprojective (projective over something affine) variety.

Definition 3.1. A polyhedral divisor on Y with tailcone σ is a "finite" formal sum

$$\mathcal{D} = \sum_{P \subset Y} \mathcal{D}_P \cdot P$$

where $P \subset Y$ are prime divisors, \mathcal{D}_P are polytopes in $N_{\mathbb{R}}$ with tailcone σ , and finite means that $\mathcal{D}_P = \sigma$ for all but finitely many P.

The tailcone of a polyhedron is its cone of unbounded directions:

Example 3.2. Take $Y = \mathbb{A}^2 = \operatorname{Spec} \mathbb{K}[x, y], \sigma = 0$,

$$\Delta = \Delta_0 \cdot V(y) + \Delta_1 \cdot V(x - y)$$

with

Polyhedral divisors determine piecewise linear maps

$$\sigma^{\vee} \to \operatorname{Div}_{\mathbb{Q}} Y$$
$$u \mapsto \sum_{P} \min \langle \mathcal{D}_{P}, u \rangle \cdot P.$$

- All but finitely many coefficients are 0.
- Well defined, since $tail(\mathcal{D}_P) = \sigma$.

Compare this to the linear map from the torsor example.

Example 3.3.

The map \mathcal{D} has an important property — it is *convex*:

 $\mathcal{D}(u) + \mathcal{D}(v) \le \mathcal{D}(u+v).$

Hence, we can construct a sheaf of \mathcal{O}_Y -algebras and associated schemes:

$$\mathcal{O}(\mathcal{D}) := \bigoplus_{u \in \sigma^{\vee} \cap M} \mathcal{O}(\mathcal{D}(u)) \cdot \chi^{u}$$
$$\widetilde{X}(\mathcal{D}) := \operatorname{Spec}_{Y} \mathcal{O}(\mathcal{D})$$
$$X(\mathcal{D}) := \operatorname{Spec} H^{0}(Y, \mathcal{O}(\mathcal{D})).$$

Example 3.4.

We would like for $X(\mathcal{D})$ to be a *T*-variety (whose dimension we can predict). For this, we need additional criteria:

Definition 3.5. \mathcal{D} is proper or a *p*-divisor if

- For all $u \in \sigma^{\vee} \cap M$, $\mathcal{D}(u)$ is Q-Cartier and semiample, i.e. has a basepoint free multiple.
- For all $u \in (\sigma^{\vee} \cap M)^{\circ}$, $\mathcal{D}(u)$ is big, i.e. has a multiple admitting a section with affine complement.

Exercise 3.6. If Y is a curve, the \mathcal{D} is proper if and only Y is affine, or deg $\mathcal{D} \subsetneq \sigma$ and for all $u \in M \cap \sigma^{\vee}$ with $u^{\perp} \cap \deg \mathcal{D} \neq \emptyset$, $\mathcal{D}(u)$ has a principal multiple. Here,

$$\deg \mathcal{D} = \sum_{P} \mathcal{D}_{P}$$

Theorem 3.7. [AH06] We have the following:

- (1) $X(\mathcal{D}), \widetilde{X}(\mathcal{D})$ are T-varieties of dimension dim Y + rank M.
- (2) $\pi: \widetilde{X}(\mathcal{D}) \to Y$ is a good quotient¹.
- (3) $\phi : \widetilde{X}(\mathcal{D}) \to X(\mathcal{D})$ is proper and birational.

Proof sketch. First assume "easy" situation: σ the positive orthant, \mathcal{D} linear with $\mathcal{D}(u)$ Cartier \rightsquigarrow

$$\mathcal{E} = \bigoplus_i \mathcal{O}(\mathcal{D}(e_i))$$

is a vector bundle. Then

$$H^{0}(Y,\mathcal{E}) = H^{0}(\mathbb{P}(\mathcal{E}), \bigoplus_{k \ge 0} \mathcal{O}_{\mathbb{P}(\mathcal{E})}(k))$$

and we can reduce to the simply graded case. Note that \mathcal{D} proper $\implies \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ semiample.

For general situation, subdivide σ^{\vee} into simplices ω_i on which \mathcal{D} is linear; coarsening the lattice gives a finite cover of something in the above "easy" situation. \Box

Theorem 3.8 ([AH06]). Every affine T-variety can be constructed as above.

We'll see part of a constructive proof of this below. The proof in [AH06] makes use of GIT, which we will omit. However, I find the following alternative argument conceptually useful, albeit incomplete:

- Let X° be the open subset of X with finite stabilizers.
- X° has (non-separated) quotient Y.
- Over Y, X° is "almost" a torsor; can be represented by a linear $\mathcal{D}: M \to \operatorname{CaDiv}_{\mathbb{O}}(Y)$ (think of stack quotients and the root construction).
- Not all sections of $\mathcal{O}_{X^{\circ}}$ extend to X; this is governed by weight cone ω :

$$X = \bigoplus_{u \in \omega \cap M} H^0(Y, \mathcal{O}(\mathcal{D}(u))).$$

Y is in general not separated; replacing Y by a separation leads to coefficients of D which are more general polyhedra, not just translates of ω[∨].

What is missing from this argument is that it is not entirely clear how to ensure that the resulting polyhedral divisor is proper.

The polyhedral divisor \mathcal{D} encodes the fibers of $\pi : X(\mathcal{D}) \to Y$, which are (unions of) toric varieties. We'll see a few more details on this later.

¹i.e. an affine morphism locally given by taking invariants

4.1. Toric Downgrades. Let $X = X(\sigma)$ be an affine toric variety for a cone σ in $\widetilde{N}_{\mathbb{R}}$. For a subtorus T of $\widetilde{T} = \widetilde{N} \otimes \mathbb{K}^*$, how do we describe X as a T-variety?

The inclusion $T \hookrightarrow \widetilde{T}$ corresponds to a surjection $\widetilde{M} \to M$. This leads to the following dual exact sequences:

$$0 \longrightarrow N \underbrace{\stackrel{p}{\underbrace{\swarrow}}_{s} \widetilde{N} \stackrel{q}{\longrightarrow} \overline{N} \longrightarrow 0$$
$$0 \longleftarrow M \underbrace{\stackrel{p^{*}}{\longleftarrow} \widetilde{M} \underbrace{\stackrel{q^{*}}{\underbrace{\longleftarrow}} \overline{M} \longleftarrow 0$$

Here we have chosen a cosection s of p. This determines t via $t(u) = u - s^*(p^*(u))$, viewed as an element of \overline{M} .

For $u \in M$, the degree u piece of $A = H^0(X, \mathcal{O}_X)$ is

$$A_u = \bigoplus_{w \in (p^*)^{-1}(u) \cap \sigma^{\vee} \cap M} \chi^w$$

Setting

$$\Delta(u) = t((p^*)^{-1}(u) \cap \sigma^{\vee})$$

we obtain

$$A_u \cong \bigoplus_{w \in \Delta(u) \cap \overline{M}} \chi^w$$

with these isomorphisms compatible with the ring structure (since t is additive)! As u ranges over M, only finitely many normal fans $\Sigma(\Delta(u))$ appear; let Σ be their coarsest common refinement. The $\Delta(u)$ represent semiample Q-divisors on $X(\Sigma)$, and the map

$$u \mapsto \Delta(u)$$

is piecewise linear and convex, hence corresponds to a p-divisor \mathcal{D} on $X(\Sigma)$.²

Example 4.1. Consider the cone σ whose rays are generated by the columns of

²The bigness criterion must also be checked, but is not difficult.

Then σ^{\vee} has rays generated by the columns of

$$\left(\begin{array}{rrrrr} 1 & 1 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array}\right).$$

We can consider the subtorus $T=(0,0,1)^{\perp}.$ We take the obvious choices for s and t.

Setting

$$\omega_1 = \mathbb{R}_{\geq 0}\{(1,0), (1,1)\}$$
$$\omega_2 = \mathbb{R}_{\geq 0}\{(1,0), (1,-1)\}$$

we obtain

$$\Delta(u) = \begin{cases} [u_2 - u_1, u_1 - u_2] & u \in \omega_1\\ [-u_1 - u_2, u_1 + u_2] & u \in \omega_2. \end{cases}$$

This leads to $Y = \mathbb{P}^1$ and

$$\mathcal{D} = \Delta \cdot (\{0\} + \{\infty\})$$

for

Exercise 4.2. Show that Σ is the fan obtained by considering the coarsest common refinement of the cones $p(\tau)$, where τ ranges over all faces of σ . Show that we can represent \mathcal{D} as

$$\mathcal{D} = \sum_{\rho \in \Sigma^{(1)}} s(q^{-1}(v_{\rho}) \cap \sigma) \cdot D_{\rho}$$

where v_{ρ} is the primitive generator of a ray ρ , and D_{ρ} the corresponding prime invariant divisor on $X(\Sigma)$.

4.2. General Affine *T*-Varieties. We can adapt the above setup to construct a p-divisor for any affine *T*-variety: If X is equivariantly embedded in \mathbb{A}^{n} ,³ this gives in particular an embedding

$$T \hookrightarrow (\mathbb{K}^*)^n = \widetilde{T}$$

The above construction produces a quotient $X(\Sigma)$ with p-divisor \mathcal{D} describing \mathbb{A}^n as a *T*-variety.

Possibly passing to a smaller affine space, we can assume that $X^{\circ} := X \cap \widetilde{T} \neq \emptyset$. Let Z be the closure of the image of X° in $X(\Sigma)$, and $\phi : Y \to Z$ its normalization.

Proposition 4.3. We have that

$$\mathcal{D}' = \phi^*(\mathcal{D}_{|Z})$$

is a p-divisor, and

$$X(\mathcal{D}') = X.$$

Proof. The claim that \mathcal{D}' is a p-divisor is straightforward. For the second claim, one needs to use a bit of GIT [AH06].

4.3. Uniqueness. How much choice does one have in representing a T-variety X by a p-divisor \mathcal{D} ? The answer given by [AH06] is that \mathcal{D} is uniquely determined up to three different kinds of equivalences:

- For $\phi : Y' \to Y$ proper and birational, \mathcal{D} a p-divisor on Y, $\phi^*(\mathcal{D})$ is the p-divisor given by $\phi^*(\mathcal{D})(u) = \phi^*(\mathcal{D}(u))$. Then we have $X(\mathcal{D}) \cong X(\phi^*(\mathcal{D}))$, since sections don't change under ϕ^* .
- For a lattice automorphism $\rho \in \operatorname{Aut}(M)$,

$$\rho(\mathcal{D}) = \sum \rho(\mathcal{D}_P) \cdot P$$

is a p-divisor on Y, and $X(\mathcal{D}) \cong X(\rho(\mathcal{D}))$.

³This is possible by Sumihiro's theorem.

• For $f \in N \otimes \mathbb{K}(Y)^*$, let div f be the principal polyhedral divisor given by

$$(\operatorname{div} \mathfrak{f})(u) = \operatorname{div}(\mathfrak{f}(u)).$$

Then $X(\mathcal{D}) \cong X(\mathcal{D} + \operatorname{div} \mathfrak{f})$, with isomorphism induced by $\chi^u \mapsto \mathfrak{f}(u)^{-1} \chi^u$.

It is a theorem of [AH06] that, up to these three equivalences, the p-divisor for X is uniquely determined. Moreover, one can similarly define a category of p-divisors, and show that it is equivalent to the category of normal affine varieties with torus action.

5. The Non-Affine Case

5.1. Divisorial Fans. We now wish to globalize our combinatorial description of T-varieties to the non-affine case. This has been done in [AHS08]. The basic idea is to glue $X(\mathcal{D})$ together for some nice set \mathcal{S} of polyhedral divisors.

A necessary change: we now allow \emptyset as a coefficient for a polyhedral divisor \mathcal{D} . For \mathcal{D} on Y,

$$\operatorname{Loc} \mathcal{D} = Y \setminus \bigcup_{P \mid \mathcal{D}_P = \emptyset} P.$$

The polyhedral divisor \mathcal{D} restricts to a "usual" polyhedral divisor $\mathcal{D}_{|\operatorname{Loc}\mathcal{D}}$, and is proper exactly when this restriction is.

Example 5.1. For Y a projective curve, \mathcal{D} a p-divisor on Y, deg $\mathcal{D} = \emptyset$ $\operatorname{Loc} \mathcal{D}$ is affine.

Let $\mathcal{D}, \mathcal{D}'$ be polyhedral divisors on Y.

- *D* ⊂ *D*' ⇔⇒ *D*_P ⊂ *D*'_P for all prime divisors *P*. *D* ∩ *D*' = ∑_P *D*_P ∩ *D*'_P · *P*

Note that

$$\mathcal{D} \subset \mathcal{D}' \implies \mathcal{D}(u) \ge \mathcal{D}'(u) \implies \mathcal{O}(\mathcal{D}') \subset \mathcal{O}(\mathcal{D})$$

in which case we obtain a dominant morphism

$$X(\mathcal{D}) \to X(\mathcal{D}').$$

Definition 5.2. \mathcal{D} is a face of \mathcal{D}' ($\mathcal{D} \prec \mathcal{D}'$) if and only if this morphism is an open embedding.

Remark 5.3. $\mathcal{D} \prec \mathcal{D}'$ implies that for all P, \mathcal{D}_P is a face of $\mathcal{D}'_P (\mathcal{D}_P \prec \mathcal{D}'_P)$. However, the converse is not true.

Example 5.4. Consider \mathcal{D} and \mathcal{D}' as pictured. This describes a downgrade of the dominant toric morphism $\mathbb{A}^2 \to \mathbb{A}^2$ coming from blowing up \mathbb{A}^2 at the origin. Despite $\mathcal{D}_P \prec \mathcal{D}'_P$ for all P, this is not an open embedding.

There is an explicit (and ugly criterion) for in general when $\mathcal{D} \prec \mathcal{D}'$. In complexity-one, it simplifies:

Proposition 5.5 ([IS11]). On a projective curve $Y, \mathcal{D} \prec \mathcal{D}' \iff \deg \mathcal{D} = \operatorname{tail} \mathcal{D} \cap \deg \mathcal{D}'.$

Definition 5.6. A *divisorial fan* on Y is a finite set S of p-divisors, closed under intersection, such that for all $\mathcal{D}, \mathcal{D}' \in S$,

$$\mathcal{D} \cap \mathcal{D}' \prec \mathcal{D}, \mathcal{D}'.$$

Construction:

$$X(\mathcal{S}) = \coprod_{\mathcal{D} \in \mathcal{S}} X(\mathcal{D}) / \sim$$

where glueing is done along

$$X(\mathcal{D}) \longleftrightarrow X(\mathcal{D} \cap \mathcal{D}') \longleftrightarrow X(\mathcal{D}').$$

Theorem 5.7. [AHS08] Every T-variety can be constructed in this way.

Proof. Sumihiro's theorem plus valuative criterion for separatedness.

Remark 5.8. For all P,

$$\mathcal{S}_P = \{\mathcal{D}_P \mid \mathcal{D} \in \mathcal{S}\}$$

forms a polyhedral complex called the *slice* of S at P.

Example 5.9. $X = \mathbb{P}(\Omega_{\mathcal{F}_1}).$

We need to know which coefficients belong to a common p-divisor. Here, all fulldimensional coefficients with common tailcone belong together.

5.2. Divisors and Global Sections. Here we follow [PS11]. The setup is a divisorial fan S on Y, leading to

$$\begin{array}{c} \widetilde{X}(\mathcal{S}) & \stackrel{\phi}{\longrightarrow} X(\mathcal{S}) \\ \downarrow^{\pi} \\ Y \end{array}$$

T-invariant prime divisors on $\widetilde{X}(\mathcal{S})$ come in two types:

- Vertical: components of $\pi^{-1}(P)$ for prime $P \subset Y$. Correspond to vertices $v \in S_P \rightsquigarrow D_{P,v}$.
- Horizontal: image covers all of Y. Correspond to rays ρ of tail(\mathcal{S}) = \mathcal{S}_{η} , for $\eta \in Y$ a general point $\rightsquigarrow D_{\rho}$.

To see this, one can take a log resolution of Y, after which $\widetilde{X}(\mathcal{S}) \to Y$ comes étale locally from a toric downgrade with fan Σ . Rays of Σ in "height zero" give rays of tail \mathcal{S} , whereas other rays give vertices in slices of \mathcal{S} .

The prime invariant divisors of X(S) are all images of prime invariant divisors of X(S). In general, some of these get contracted by ϕ . In the case of complexity one, only divisors of the form D_{ρ} may be contracted.

Proposition 5.10. Given $f \in \mathbb{K}(Y)$,

$$\operatorname{div}(f \cdot \chi^u) = \sum_{P,v} \mu(v)(\nu_P(f) + \langle v, u \rangle) D_{P,v} + \sum_{\rho} \langle v_{\rho}, u \rangle D_{\rho}$$

where $\nu_P(f)$ is the order of vanishing of f along P, $\mu(v)$ is the smallest natural number such that $\mu(v)v \in N$, and v_{ρ} is the primitive lattice generator of ρ .

Proof. After assuming $\widetilde{X}(\mathcal{S}) \to Y$ is (locally) toric, this follows from the classical toric formula.

This leads to a formula for global sections of divisors. Let $D = \sum a_{P,v}\mu(v)D_{p,v} + \sum a_{\rho}D_{\rho}$ be a *T*-invariant divisor on $X(\mathcal{S})$. Define

$$\Box^{D} = \{ u \in M_{\mathbb{R}} \mid \langle v_{\rho}, u \rangle + a_{\rho} \ge 0 \}$$
$$\Psi^{D}_{P}(u) = \min_{v \in \mathcal{S}_{P}^{(0)}} (a_{P,v} + \langle v, u \rangle)$$
$$\Psi^{D} : \Box^{D} \to \operatorname{Div}_{\mathbb{Q}} Y$$
$$u \mapsto \sum_{P} \Psi^{D}_{P}(u)P$$

Proposition 5.11. We have a graded isomorphism

$$H^{0}(X(\mathcal{S}), \mathcal{O}(D)) = \bigoplus_{u \in \Box^{D} \cap M} H^{0}(Y, \mathcal{O}(\Psi^{D}(u))).$$

Proof. Given $f \cdot \chi^u \in \mathbb{K}(X)$, the D_ρ coefficient of $\operatorname{div}(f) + D$ is non-negative if and only if $\langle v_\rho, u \rangle + a_\rho \geq 0$. The $D_{P,v}$ coefficient is non-negative if and only if $\langle v, u \rangle + \nu_P(f) + a_{P,v} \geq 0$.

Example 5.12. We consider the divisor

$$D = D_{0,(0,0)} + D_{0,(0,1)} + D_{0,(0,-1)} + D_{1,(0,0)} + D_{1,(1,0)}$$

This is an anticanonical divisor on this variety. This leads to

$$\Psi_0^D(u) = \begin{cases} 1 - u_2 & u_2 \ge 0\\ 1 + u_2 & u_2 \le 0 \end{cases}$$
$$\Psi_1^D(u) = \begin{cases} 1 & u_1 \ge 0\\ 1 + u_1 & u_1 \le 0 \end{cases}$$
$$\Psi_\infty^D(u) = \begin{cases} 0 & u_1 \le u_2\\ u_2 - u_1 & u_2 \le u_1 \end{cases}$$

and e.g.

$$H^{0}(\mathcal{O}(D))_{(-2,0)} \cong H^{0}(\mathbb{P}^{1}, \mathcal{O}(\{0\} - \{1\})).$$

The weights in which H^0 is supported are pictured below:

6. Cox Rings

Let X be a smooth projective variety with $\operatorname{Pic}(X) \cong \mathbb{Z}^n$. After choosing representatives $D_1, \ldots, D_n \in \operatorname{Div}(X)$ of a basis of $\operatorname{Pic}(X)$, we can define the Cox ring of X to be

$$\operatorname{Cox}(X) = \bigoplus_{u \in \mathbb{Z}^n} H^0(X, \mathcal{O}(u_1 D_1 + \ldots + u_n D_n))$$

with multiplication given by the natural multiplication of sections.⁴ X is a Mori Dream Space (MDS) if Cox(X) is finitely generated.

We will apply the tools we have developed to prove that smooth, rational complexityone *T*-varieties X are MDS. In particular, if \mathcal{E} is a rank two toric vector bundle over a smooth toric variety, $\mathbb{P}(\mathcal{E})$ is MDS. The first statement was originally proven in a much more general setting in [HS10]; the latter statement was proven independently by [Gon12]. The arguments we are using are from [IV13]; similar arguments are used in [AP12] to also include the singular case with torsion in the class group.

We fix our rational complexity-one *T*-variety X(S); here we have $Y = \mathbb{P}^1$. We can choose the representatives D_1, \ldots, D_n to be *T*-invariant. Set $D(u) = \sum u_i D_i$. Then we obtain

$$\operatorname{Cox}(X) = \bigoplus_{u \in \mathbb{Z}^n} H^0(X, D(u))$$
$$= \bigoplus_{u \in \mathbb{Z}^n} \bigoplus_{w \in M \cap \Box^{D(u)}} H^0(\mathbb{P}^1, \mathcal{O}(\Psi(u))) = \bigoplus_{(u,w) \in \omega} H^0(\mathbb{P}^1, \mathcal{O}(\Psi^{D(u)}(w)))$$

where ω is the cone in $(\mathbb{Z}^n \times M)_{\mathbb{R}}$ generated by $(u, \Box^{D(u)})$. The map

$$\mathcal{D}: \omega \to \operatorname{Div}_{\mathbb{Q}}(\mathbb{P}^1)$$
$$(u, w) \mapsto \Psi^{D(u)}(w)$$

is piecewise-linear and convex, hence can be thought of as a polyhedral divisor! The one difficulty is that it might not be proper.

However, we can restrict \mathcal{D} to the closed subcone ω' of ω on with the degree of \mathcal{D} is non-negative, since elsewhere $\mathcal{O}(\mathcal{D})$ has no sections. Since $Y = \mathbb{P}^1$, this is already enough to guarantee that $\mathcal{D}(u, w)$ is semiample for all $(u, w) \in \omega'$. This in turn guarantees finite generation of the Cox ring.

⁴More generally, one can define a Cox ring for singular X as long as the class group is finitely generated.

Exercise 6.1. Given representatives D_1, \ldots, D_n as above, explicitly determine the coefficients of the polyhedral divisor \mathcal{D} describing the Cox ring.

7. Deformations

References

- [AH06] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions. Math. Ann., 334(3):557–607, 2006.
- [AHS08] Klaus Altmann, Jürgen Hausen, and Hendrik Süss. Gluing affine torus actions via divisorial fans. Transform. Groups, 13(2):215–242, 2008.
- [AIP⁺12] Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert. The geometry of *T*-varieties. In *Contributions to algebraic geometry*, EMS Ser. Congr. Rep., pages 17–69. Eur. Math. Soc., Zürich, 2012.
- [AP12] Klaus Altmann and Lars Petersen. Cox rings of rational complexity-one *T*-varieties. *J. Pure Appl. Algebra*, 216(5):1146–1159, 2012.
- [Gon12] José Luis González. Projectivized rank two toric vector bundles are Mori dream spaces. Comm. Algebra, 40(4):1456–1465, 2012.
- [HS10] Jürgen Hausen and Hendrik Süß. The Cox ring of an algebraic variety with torus action. Adv. Math., 225(2):977–1012, 2010.
- [IS11] Nathan Owen Ilten and Hendrik Süss. Polarized complexity-1 T-varieties. Michigan Math. J., 60(3):561–578, 2011.
- [IV13] Nathan Owen Ilten and Robert Vollmert. Upgrading and downgrading torus actions. J. Pure Appl. Algebra, 217(9):1583–1604, 2013.
- [PS11] Lars Petersen and Hendrik Süss. Torus invariant divisors. Israel J. Math., 182:481–504, 2011.

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby BC V5A1S6, Canada

E-mail address: nilten@sfu.ca