Claim: $\operatorname{Pic}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}$
Proof: Write \mathbb{P}^{n} as a union of open affine subsets $U_{i}=\left\{x_{i} \neq 0\right\}, 0 \leq i \leq n$. Here, the x_{i} refer to the standard coordinates on \mathbb{P}^{n}. For an open subset U of \mathbb{P}^{n}, the functions on U are ratios of homogeneous polynomials f / g, where g does not vanish on U and $\operatorname{deg}(f)=\operatorname{deg}(g)$. In particular, the ring of functions on U_{i} equals $\mathbb{C}\left[\frac{x_{j}}{x_{i}}\right], j \neq i$.

Now, let E be a line bundle of $\mathbb{P}^{n} . E$ is trivializable on each of the U_{i}, so let $\alpha_{i} \in \Gamma\left(U_{i}, E\right)$ be a generator. For any open subset V of U_{i}, the restriction of α_{i} to V is a generator for $\Gamma(V, E)$, and it should not cause confusion to call this element α_{i} as well.

So, on $U_{0} \cap U_{1}, \alpha_{0}$ and α_{1} are two generators of $\Gamma\left(U_{0} \cap U_{1}, E\right)$, and so we must have $\alpha_{1}=k \alpha_{0}$, where k is an invertible element of $\mathcal{O}\left(U_{0} \cap U_{1}\right)=\mathbb{C}\left[\frac{x_{0}}{x_{1}}, \frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right]$. It is clear that the only invertible elements are of the form $z\left(\frac{x_{0}}{x_{1}}\right)^{d_{1}}$, where $z \in \mathbb{C}^{\times}$and $d_{1} \in \mathbb{Z}$. Replacing α_{1} with α_{1} / z, we have $\alpha_{1}=\left(\frac{x_{1}}{x_{0}}\right)^{d_{1}} \alpha_{0}$.

Repeating this analysis, we must have $\alpha_{i}=\left(\frac{x_{i}}{x_{0}}\right)^{d_{i}} \alpha_{0}$, for $i=1,2, \ldots, n$, and integers $d_{i} \in \mathbb{Z}$. It is clear that E is determined by the d_{i}. Conversely, the d_{i} are determined by E, because the only invertible elements ("gauge transformations") on each of the $\mathcal{O}\left(U_{i}\right)$ are scalars. Our next step is to show that all d_{i} must be equal. Indeed, pick $i \neq j \neq 0$. By the same analysis as before we must have $\alpha_{i}=z\left(\frac{x_{i}}{x_{j}}\right)^{m} \alpha_{j}$ for some $z \in \mathbb{C}^{\times}$ and $m \in \mathbb{Z}$. But then:

$$
\alpha_{i}=z\left(\frac{x_{i}}{x_{j}}\right)^{m} \alpha_{j}=z\left(\frac{x_{i}}{x_{j}}\right)^{m}\left(\frac{x_{j}}{x_{0}}\right)^{d_{j}} \alpha_{0}=z\left(\frac{x_{i}}{x_{j}}\right)^{m}\left(\frac{x_{j}}{x_{0}}\right)^{d_{j}}\left(\frac{x_{0}}{x_{i}}\right)^{d_{i}} \alpha_{i}
$$

And so we must have $z=1$ and $m=d_{j}=d_{i}$. In fact, this shows that $\alpha_{i}=\left(\frac{x_{i}}{x_{j}}\right)^{d} \alpha_{j}$ for all i, j, and for some fixed integer n. Then, letting E correspond to d, we have a bijection between $\operatorname{Pic}\left(\mathbb{P}^{n}\right)$ and \mathbb{Z}. To see that this is a homomorphism: Observe that if E and E^{\prime} are two line bundles that have generators α_{i} of $\Gamma\left(U_{i}, E\right)$ and associated integer d (resp. $\left.\alpha_{i}^{\prime}, \Gamma\left(U_{i}, E^{\prime}\right), d^{\prime}\right)$, then $E \otimes E^{\prime}$ have generators $\alpha_{i} \otimes \alpha_{i}^{\prime}$ on $\Gamma\left(U_{i}, E \otimes E^{\prime}\right)$. Then on, say, $U_{0} \cap U_{1}$ we have $\alpha_{1} \otimes \alpha_{1}^{\prime}=\left(\left(\frac{x_{1}}{x_{0}}\right)^{d} \alpha_{0}\right) \otimes\left(\left(\frac{x_{1}}{x_{0}}\right)^{d^{\prime}} \alpha_{0}^{\prime}\right)=\left(\frac{x_{1}}{x_{0}}\right)^{d+d^{\prime}}\left(\alpha_{0} \otimes \alpha_{0}^{\prime}\right)$.

Remark: There are exactly two ways of constructing an isomorphism of $\operatorname{Pic}\left(\mathbb{P}^{n}\right)$ with \mathbb{Z}. The standard choice is to assign the integer d to the line bundle, denoted by $\mathcal{O}_{\mathbb{P}^{n}}(d)$, where for $U \subset \mathbb{P}^{n}$ open: $\mathcal{O}_{\mathbb{P}^{n}}(d)(U)=\{f / g \mid f, g$ homo., $g \neq 0$ on $U, \operatorname{deg}(f)-\operatorname{deg}(g)=$ $d\}$. For $E=\mathcal{O}_{\mathbb{P}^{n}}(1)$, a generator for $\Gamma\left(U_{0}, E\right)$ is $\alpha_{0}=x_{0}$, while a generator for $\Gamma\left(U_{1}, E\right)$ is $\alpha_{1}=x_{1}$. So $\alpha_{1}=\left(\frac{x_{1}}{x_{0}}\right) \alpha_{0}$, and so the description in the proof above would also assign the number 1 to E.

