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Theorem 23.1. Let G be a finite group, Vi be irreducible representations with i ∈ Φ(G),
and χi are irreducible characters of Vi. Given some representation (V, ρ) of G, we
define a linear map

Pi : V → V

by

Pi(v) = ρ(χi) · v = ρ

(∑
g∈G

χi(g)fg

)
· v =

∑
g∈G

χi(g)ρ(g) · v.

Then

1. Pi is a map of G-representations Pi(ρ(g) · v) = ρ(g)Pi(v).

2. If we write V as a sum of irreducibles

V ∼=
⊕
i

V ⊕dii

then we have that the image of Pi is V ⊕dii

3.

P 2
i =

|G|
dimVi

Pi

i.e. it is almost an orthogonal projection.

We proved (1) in the last lecture, but we include the proof here for convenience.

Proof of (1). To be a map of G− reps, we must have the following diagram commute for all
g ∈ G:

V V

V V

Pi

ρ(g) ρ(g)

Pi

that is
Pi ◦ ρ(g) = ρ(g) ◦ Pi

On the left hand size, we have(∑
g′∈G

χi(g
′)ρ(g′)

)
◦ ρ(g) =

∑
g′∈G

χi(g
′)ρ(g′g)

We let h = g′g and re-index this as ∑
h∈G

χi(hg
−1)ρ(h)
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And on the right we have

ρ(g) ◦
∑
g′∈G

χi(g
′)ρ(g′) =

∑
g′∈G

χi(g
′)ρ(gg′)

We let h = gg′ and re-index this as ∑
h∈G

χ(g−1h)ρ(h)

These are equal because characters are class functions, i.e.

χi(hg
−1) = χi(g

−1h)

This proves that Pi is a map of G-reps.

Proof of (2). Suppose that V = Vj an irreducible representation. Consider Pi : Vj → Vj.
What we want to show is that

Image(Pi) =

{
〈0〉 if i 6= j

Vj if i = j

By (1), we know that Pi is a map of irreducible G-representations, so by Schur’s Lemma,
Pi = c · IdVj for some c; i.e. Pi is some scaling of the identity. Now, we claim that

Tr(Pi) = |G| · 〈χi, χj〉

By definition, we have

TrVj(Pi) = TrVj

(∑
g∈G

χi(g)ρ(g)

)
=
∑
g∈G

χi(g) TrVj(ρ(g))

=
∑
g∈G

χi(g)χj(g)

= |G|〈χi, χj〉.

As a consequence, we must have that

(dimVj) · c = |G| ·

{
0 if i 6= j

1 if i = j.

Therefore if i 6= j, then the image is 〈0〉 (because the constant is 0), and if i = j then the
image is all of Vj (because the map is a nonzero multiple of the identity).

Now, we claim that Pi is “functorial” in the sense that the following diagram commutes
for any map of G-representations ϕ:
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(W,σ) (V, ρ)

(W,σ) (V, ρ)

Pi

ϕ

Pi

ϕ

Formally, Pi is an endomorphism of the identity functor of Rep(G). We prove this by
unraveling the definitions, as per usual:

Pi ◦ ϕ =

(∑
g∈G

χi(g)σ(g)

)
◦ ϕ

=
∑
g∈G

(
χi(g)σ(g) ◦ ϕ

)
=
∑
g∈G

(
ϕ ◦

(
χi(g)ρ(g)

))
= ϕ ◦

(∑
g∈G

χi(g)ρ(g)

)
= ϕ ◦ Pi

Where we moved from the second to the third line by using the assumption that ϕ is a map
of G-representations Let us come back to (V, ρ). Suppose that V ∼=

⊕
j V
⊕dj
j . Denote by

ϕ`j : V `
j ↪→ V the inclusion maps for ` = 1, . . . dj. Now, applying the naturality to ϕ`j, we

have that

V `
j V

V `
j V

Pi

ϕ`
j

Pi

ϕ`
j

commutes. It follows that the Pi on the right is an isomorphism on the Vi components of V
(that is, when the inclusion map is ϕ`i for some `) and vanishes elsewhere. This concludes
the proof.

Proof of (3). Since

Pi = c · IdVi =
|G|

dimVi
Idi

(3) follows immediately.

This marks the end of representation theory, and the beginning of rings and modules.
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Definition 23.2. A ring R is a set with two operations +, · : R×R→ R (the former
which we call addition and the latter multiplication), such that

1. R with addition is an Abelian group, whose additive identity we denote by 0,

2. R with multiplication is a monoid with an identity which we denote by 1 (that
is, it is associative but not necessarily commutative, and inverses need not exist),
and

3. multiplication distributes over addition.

When multiplication is commutative, we refer to the ring as a commutative ring.

Example 23.3. 1. Any field is a ring.

2. R = Z the set of integers is a very important ring (one may recall from the
midterm that it is the initial object in the category of rings).

3. C[x1, . . . , xn]

4. R = Mn(C). That is, the ring of complex matrices where + is entrywise addition
and · is matrix multiplication.

Definition 23.4. 1. A ring map c : K → R is a set map satisfying the following
axioms.

c(k1 + k2) = c(k1) + c(k2)

c(k1 · k2) = c(k1) · c(k2)

c(0) = 0

c(1) = 1.

2. If K is a field, then a K-algebra A is a ring with a ring map c : K → A.

Exercise 23.5. 1. If A is not the zero ring, the map c is an injection.

2. An equivalent definition is that A is a K-vector space with respect to addition
and multiplication is K-linear.

Example 23.6. Some common C-algebras include C,C[x1, . . . , xn], and Mn(C).
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Example 23.7 (Key Example). Let G be a finite group. Let A = C[G] = {f : G→ C}
be a C-algebra, which we commonly refer to as the group algebra. The operations of
this algebra is usual addition for + and convolution for ·. The convolution is defined
in the following way:

(f1 ∗ f2)(x) =

((∑
g∈G

f1(g)δg

)
∗

(∑
g∈G

f2(g)δg

))
(x) =

∑
g1g2=x

f1(g1)f2(g2).

In other words, we have f1 ∗ f2 =
∑

x∈G

(∑
g1g2=x f(g1)f2(g2)

)
δx.

In the special case that f1 = δg1 and f2 = δg2 , we have

f1 ∗ f2 = δx1 ∗ δx2 =
∑
x∈G

({
1 if g1 = x1, g2 = x2

0 otherwise

)
δx = δx1x2 .

Therefore, we can think of convolution as C-linear extension of group multiplication. Note
that this is different from the pointwise multiplication of functions.

Exercise 23.8. 1. C[G] is commutative if and only if G is Abelian.

2. The ring map c : C→ C[G] is defined by c(z) = zδe.

The next idea we wish to introduce is the idea of a module.

Definition 23.9. Given a ring R, an R-module M is a set with structures

1. M with addition is an Abelian group,

2. the action map R×M →M is associative and unital, and

3. the action distributes over addition.

Alternatively, we can reformulate the idea of an R-module as a ring map R →
EndAb(M).

Example 23.10. 1. If R is a field K, then an R-module M is a K-vector space.

2. If R is Z, then R-modules are Abelian groups.

3. If R is the polynomial algebra, then R-modules are C-vector spaces M equipped
with n commuting endomorphisms xi : M → M for i = 1, . . . , n. Algebraic
geometry is essentially the study of these C[x1, . . . , xn]-modules.
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Theorem 23.11. If R = Mn(C), then the R-modules are all direct sums of copies of
the vector module Cn.

Exercise 23.12. If R = C[G] is the group algebra, R-modules are complex G-
representations.

We shall show this exercise next week.
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