23 November 15, 2018

Theorem 23.1. Let G be a finite group, V_{i} be irreducible representations with $i \in \Phi(G)$, and χ_{i} are irreducible characters of V_{i}. Given some representation (V, ρ) of G, we define a linear map

$$
P_{i}: V \rightarrow V
$$

by

$$
P_{i}(v)=\rho\left(\chi_{i}\right) \cdot v=\rho\left(\sum_{g \in G} \chi_{i}(g) f_{g}\right) \cdot v=\sum_{g \in G} \overline{\chi_{i}(g)} \rho(g) \cdot v .
$$

Then

1. P_{i} is a map of G-representations $P_{i}(\rho(g) \cdot v)=\rho(g) P_{i}(v)$.
2. If we write V as a sum of irreducibles

$$
V \cong \bigoplus_{i} V_{i}^{\oplus d_{i}}
$$

then we have that the image of P_{i} is $V_{i}^{\oplus d_{i}}$
3.

$$
P_{i}^{2}=\frac{|G|}{\operatorname{dim} V_{i}} P_{i}
$$

i.e. it is almost an orthogonal projection.

We proved (1) in the last lecture, but we include the proof here for convenience.
Proof of (1). To be a map of $G-r e p s$, we must have the following diagram commute for all $g \in G$:

that is

$$
P_{i} \circ \rho(g)=\rho(g) \circ P_{i}
$$

On the left hand size, we have

$$
\left(\sum_{g^{\prime} \in G} \chi_{i}\left(g^{\prime}\right) \rho\left(g^{\prime}\right)\right) \circ \rho(g)=\sum_{g^{\prime} \in G} \chi_{i}\left(g^{\prime}\right) \rho\left(g^{\prime} g\right)
$$

We let $h=g^{\prime} g$ and re-index this as

$$
\sum_{h \in G} \chi_{i}\left(h g^{-1}\right) \rho(h)
$$

And on the right we have

$$
\rho(g) \circ \sum_{g^{\prime} \in G} \chi_{i}\left(g^{\prime}\right) \rho\left(g^{\prime}\right)=\sum_{g^{\prime} \in G} \chi_{i}\left(g^{\prime}\right) \rho\left(g g^{\prime}\right)
$$

We let $h=g g^{\prime}$ and re-index this as

$$
\sum_{h \in G} \chi\left(g^{-1} h\right) \rho(h)
$$

These are equal because characters are class functions, i.e.

$$
\chi_{i}\left(h g^{-1}\right)=\chi_{i}\left(g^{-1} h\right)
$$

This proves that P_{i} is a map of G-reps.
Proof of (2). Suppose that $V=V_{j}$ an irreducible representation. Consider $P_{i}: V_{j} \rightarrow V_{j}$. What we want to show is that

$$
\operatorname{Image}\left(P_{i}\right)= \begin{cases}\langle 0\rangle & \text { if } i \neq j \\ V_{j} & \text { if } i=j\end{cases}
$$

By (1), we know that P_{i} is a map of irreducible G-representations, so by Schur's Lemma, $P_{i}=c \cdot \operatorname{Id}_{V_{j}}$ for some c; i.e. P_{i} is some scaling of the identity. Now, we claim that

$$
\operatorname{Tr}\left(P_{i}\right)=|G| \cdot\left\langle\chi_{i}, \chi_{j}\right\rangle
$$

By definition, we have

$$
\begin{aligned}
\operatorname{Tr}_{V_{j}}\left(P_{i}\right) & =\operatorname{Tr}_{V_{j}}\left(\sum_{g \in G} \overline{\chi_{i}(g)} \rho(g)\right) \\
& =\sum_{g \in G} \overline{\chi_{i}(g)} \operatorname{Tr}_{V_{j}}(\rho(g)) \\
& =\sum_{g \in G} \overline{\chi_{i}(g)} \chi_{j}(g) \\
& =|G|\left\langle\chi_{i}, \chi_{j}\right\rangle .
\end{aligned}
$$

As a consequence, we must have that

$$
\left(\operatorname{dim} V_{j}\right) \cdot c=|G| \cdot \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Therefore if $i \neq j$, then the image is $\langle 0\rangle$ (because the constant is 0), and if $i=j$ then the image is all of V_{j} (because the map is a nonzero multiple of the identity).

Now, we claim that P_{i} is "functorial" in the sense that the following diagram commutes for any map of G-representations φ :

Formally, P_{i} is an endomorphism of the identity functor of $\operatorname{Rep}(G)$. We prove this by unraveling the definitions, as per usual:

$$
\begin{aligned}
P_{i} \circ \varphi & =\left(\sum_{g \in G} \overline{\chi_{i}(g)} \sigma(g)\right) \circ \varphi \\
& =\sum_{g \in G}\left(\overline{\chi_{i}(g)} \sigma(g) \circ \varphi\right) \\
& =\sum_{g \in G}\left(\varphi \circ\left(\overline{\chi_{i}(g)} \rho(g)\right)\right) \\
& =\varphi \circ\left(\sum_{g \in G} \overline{\chi_{i}(g)} \rho(g)\right) \\
& =\varphi \circ P_{i}
\end{aligned}
$$

Where we moved from the second to the third line by using the assumption that φ is a map of G-representations Let us come back to (V, ρ). Suppose that $V \cong \bigoplus_{j} V_{j}^{\oplus d_{j}}$. Denote by $\varphi_{j}^{\ell}: V_{j}^{\ell} \hookrightarrow V$ the inclusion maps for $\ell=1, \ldots d_{j}$. Now, applying the naturality to φ_{j}^{ℓ}, we have that

commutes. It follows that the P_{i} on the right is an isomorphism on the V_{i} components of V (that is, when the inclusion map is φ_{i}^{ℓ} for some ℓ) and vanishes elsewhere. This concludes the proof.

Proof of (3). Since

$$
P_{i}=c \cdot \operatorname{Id}_{V_{i}}=\frac{|G|}{\operatorname{dim} V_{i}} \operatorname{Id}_{i}
$$

(3) follows immediately.

This marks the end of representation theory, and the beginning of rings and modules.

Definition 23.2. A ring R is a set with two operations $+, \cdot: R \times R \rightarrow R$ (the former which we call addition and the latter multiplication), such that

1. R with addition is an Abelian group, whose additive identity we denote by 0 ,
2. R with multiplication is a monoid with an identity which we denote by 1 (that is, it is associative but not necessarily commutative, and inverses need not exist), and
3. multiplication distributes over addition.

When multiplication is commutative, we refer to the ring as a commutative ring.

Example 23.3. 1. Any field is a ring.
2. $R=\mathbb{Z}$ the set of integers is a very important ring (one may recall from the midterm that it is the initial object in the category of rings).
3. $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
4. $R=M_{n}(\mathbb{C})$. That is, the ring of complex matrices where + is entrywise addition and \cdot is matrix multiplication.

Definition 23.4. 1. A ring map $c: K \rightarrow R$ is a set map satisfying the following axioms.

$$
\begin{aligned}
c\left(k_{1}+k_{2}\right) & =c\left(k_{1}\right)+c\left(k_{2}\right) \\
c\left(k_{1} \cdot k_{2}\right) & =c\left(k_{1}\right) \cdot c\left(k_{2}\right) \\
c(0) & =0 \\
c(1) & =1 .
\end{aligned}
$$

2. If K is a field, then a K-algebra A is a ring with a ring map $c: K \rightarrow A$.

Exercise 23.5. 1. If A is not the zero ring, the map c is an injection.
2. An equivalent definition is that A is a K-vector space with respect to addition and multiplication is K-linear.

Example 23.6. Some common \mathbb{C}-algebras include $\mathbb{C}, \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and $M_{n}(\mathbb{C})$.

Example 23.7 (Key Example). Let G be a finite group. Let $A=\mathbb{C}[G]=\{f: G \rightarrow \mathbb{C}\}$ be a \mathbb{C}-algebra, which we commonly refer to as the group algebra. The operations of this algebra is usual addition for + and convolution for \cdot. The convolution is defined in the following way:

$$
\left(f_{1} * f_{2}\right)(x)=\left(\left(\sum_{g \in G} f_{1}(g) \delta_{g}\right) *\left(\sum_{g \in G} f_{2}(g) \delta_{g}\right)\right)(x)=\sum_{g_{1} g_{2}=x} f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right) .
$$

In other words, we have $f_{1} * f_{2}=\sum_{x \in G}\left(\sum_{g_{1} g_{2}=x} f\left(g_{1}\right) f_{2}\left(g_{2}\right)\right) \delta_{x}$.
In the special case that $f_{1}=\delta_{g_{1}}$ and $f_{2}=\delta_{g_{2}}$, we have

$$
f_{1} * f_{2}=\delta_{x_{1}} * \delta_{x_{2}}=\sum_{x \in G}\left(\left\{\begin{array}{ll}
1 & \text { if } g_{1}=x_{1}, g_{2}=x_{2} \\
0 & \text { otherwise }
\end{array}\right) \delta_{x}=\delta_{x_{1} x_{2}}\right.
$$

Therefore, we can think of convolution as \mathbb{C}-linear extension of group multiplication. Note that this is different from the pointwise multiplication of functions.

Exercise 23.8. 1. $\mathbb{C}[G]$ is commutative if and only if G is Abelian.
2. The ring map $c: \mathbb{C} \rightarrow C[G]$ is defined by $c(z)=z \delta_{e}$.

The next idea we wish to introduce is the idea of a module.
Definition 23.9. Given a ring R, an R-module M is a set with structures

1. M with addition is an Abelian group,
2. the action map $R \times M \rightarrow M$ is associative and unital, and
3. the action distributes over addition.

Alternatively, we can reformulate the idea of an R-module as a ring map $R \rightarrow$ $\operatorname{End}_{\mathrm{Ab}}(M)$.

Example 23.10. 1. If R is a field K, then an R-module M is a K-vector space.
2. If R is \mathbb{Z}, then R-modules are Abelian groups.
3. If R is the polynomial algebra, then R-modules are \mathbb{C}-vector spaces M equipped with n commuting endomorphisms $x_{i}: M \rightarrow M$ for $i=1, \ldots, n$. Algebraic geometry is essentially the study of these $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$-modules.

Theorem 23.11. If $R=M_{n}(\mathbb{C})$, then the R-modules are all direct sums of copies of the vector module \mathbb{C}^{n}.

Exercise 23.12. If $R=\mathbb{C}[G]$ is the group algebra, R-modules are complex G representations.

We shall show this exercise next week.

