1 Problem 1

Suppose that X is a CW complex with exactly one 0 -cell $* \in X$. Show that if $X^{n-1} \hookrightarrow X^{n}$ is nullhomotopic rel $*$, for all $n \geq 0$, then X is contractible.

2 Problem 2

Let $K_{1}, K_{2} \subset \mathbb{R}^{3}$ be circles such that K_{1} is contained in the $x y$-plane, K_{2} is contained in the $y z$-plane, and K_{1}, K_{2} are linked. For example, you may take K_{1} to be defined by the equation $x^{2}+y^{2}=1$ and K_{2} to be defined by the equation $(y-1)^{2}+z^{2}=1$. Let $A=\mathbb{R}^{3} \backslash K_{1}$ and $B=\mathbb{R}^{3} \backslash K_{2}$ and suppose that $\gamma: S^{1} \rightarrow \mathbb{R}^{3}$ is a continuous map whose image lands in $A \cap B$. Show that if γ is nullhomotopic in both A and B, then γ is nullhomotopic in $A \cap B$.

3 Problem 3

What are the all the connected 2-to-1 covering spaces of $S^{1} \vee S^{1}$? To receive full credit you must construct all 2-to-1 covering spaces and show that there are no others. (Hint: Every index two subgroup of a group is normal).

