Name: \qquad Math 250A Midterm 2

1. (10 points) State whether each assertion is always true (T) or sometimes false (F).
(a) (1 point) \mathbf{F} Up to isomorphism, there is a unique abelian group of order 20.
(b) (1 point) \mathbf{T} Up to isomorphism, there is a unique abelian group of order 30.
(c) (1 point) \mathbf{F} There exists a non-abelian group of order 15.
(d) (1 point) \mathbf{T} There exists a non-abelian group of order 21.
(e) (1 point) \mathbf{T} A group of order 30 can have an irreducible representation of dimension 2.
(f) (1 point) \mathbf{F} A group of order 60 can have an irreducible representation of dimension 8.
(g) (1 point) $\underset{\mathbf{T}}{ }$ A 3 -Sylow subgroup of Σ_{6} is isomorphic to $\mathbb{Z} / 3 Z \times \mathbb{Z} / 3 \mathbb{Z}$.
(h) (1 point) $\xrightarrow[\mathbf{T}]{ }$ A 3-Sylow subgroup of Σ_{6} is a 3-Sylow subgroup of Σ_{8} under any inclusion $\Sigma_{6} \subset \Sigma_{8}$.
(i) (1 point) \mathbf{T} The dihedral group D_{10} (symmetries of a regular pentagon) has trivial center $\langle 1\rangle$.
(j) (1 point) \mathbf{F} The dihedral group D_{12} (symmetries of a regular hexagon) has trivial center $\langle 1\rangle$.
2. (10 points) Let Σ_{4} be the symmetric group permuting the four elements $1,2,3,4$. For each action listed below, calculate the number of orbits and list the stabilizers occuring.
(a) (2 points) Σ_{4} acting diagonally on the union set $\{1,2,3,4\} \cup\{1,2,3,4\}$
(a) 2 orbits with stabilizer Σ_{3} in each case
(b) (2 points) Σ_{4} acting diagonally on the product set $\{1,2,3,4\} \times\{1,2,3,4\}$.
(b) 2 orbits with stabilizers Σ_{3} and $\Sigma_{2} \simeq \mathbb{Z} / 2 \mathbb{Z}$
(c) (2 points) Σ_{4} acting on the set of two element subsets of $\{1,2,3,4\}$.
(c) 1 orbit with stabilizer $\mathbb{Z} / 2 Z \times \mathbb{Z} / 2 \mathbb{Z}$
(d) (2 points) Σ_{4} acting on the set of three element subsets of $\{1,2,3,4\}$.
(d) \qquad 1 orbit with stabilizer Σ_{3}
(e) (2 points) Σ_{4} acting on its set of 3-Sylow subgroups by conjugation.

$$
\text { (e) } 1 \text { orbit with stabilizer } \Sigma_{3}
$$

3. (10 points) For each group listed below, how many isomorphism classes of irreducible representations does it have?
(a) (2 points) $\mathbb{Z} / 4 \mathbb{Z}$ (cyclic group of order 4).
\qquad
(a)

4
(b) (2 points) Σ_{3} (symmetric group on 3 elements).
(b) 3
(c) (2 points) $\mathbb{Z} / 4 \mathbb{Z} \times \Sigma_{3}$ (product group).
(c) \qquad 12
(d) (2 points) $\mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ (semi-direct product) where $1 \in \mathbb{Z} / 2 \mathbb{Z}$ acts on $a \in \mathbb{Z} / 3 \mathbb{Z}$ by $1 \cdot a=-a$.
(d) \qquad 3
(e) (2 points) Σ_{4} (symmetric group on 4 elements).
(e)

Math 250A Midterm 2

4. (10 points) For each representation listed below, how many irreducible summands (counted with multiplicities) does it have?
(a) (2 points) $\operatorname{Ind}_{\langle 1\rangle}^{\Sigma_{3}} \mathbb{C}$ (induction of trivial representation).
(a) 4
(b) (2 points) $\operatorname{Ind}_{\mathbb{Z} / 2 \mathbb{Z}}^{\Sigma_{3}} \mathbb{C}$ (induction of trivial representation).
\qquad
2
(c) (2 points) $\operatorname{Ind}_{\mathbb{Z} / 3 \mathbb{Z}}^{\Sigma_{3}} \mathbb{C}$ (induction of trivial representation).
(c) \qquad 2
(d) (2 points) $\operatorname{Res}_{\langle 1\rangle}^{\Sigma_{3}} \mathbb{C}\left[\Sigma_{3}\right]$ (restriction of left regular representation).
(d) 6
(e) (2 points) $\operatorname{Res}_{\Sigma_{3}}^{\Sigma_{3} \times \Sigma_{3}} \mathbb{C}\left[\Sigma_{3}\right]$ (restriction of bi-regular representation to diagonal).
(e) 5
5. (10 points) Calculate the dimension of the complex vector space $\operatorname{Hom}_{G}(W, V)$ for each listed group G and representations W, V.
(a) (2 points) $G=\langle 1\rangle, W=\mathbb{C}^{2}, V=\mathbb{C}^{3}$.
(a) \qquad 6
(b) (2 points) $G=\mathbb{Z} / 6 \mathbb{Z}, W=V=\mathbb{C}[G]$ (left regular representation).
\qquad
6
(c) (2 points) $G=\Sigma_{3}, W=V=\mathbb{C}[G]$ (left regular representation).
(c) \qquad
(d) (2 points) $G=\Sigma_{3}, W=\mathbb{C}$ (trivial representation), $V=\left(\mathbb{C}^{3}\right)^{\otimes 2}$ (tensor of standard representation with itself).

$$
(\mathrm{d}) \xrightarrow{2}
$$

(e) (2 points) $G=\Sigma_{3}, W=\mathbb{C}$ (trivial representation), $V=\operatorname{Sym}^{2}\left(\mathbb{C}^{3}\right)$ (second symmetric power of standard representation).
(e)

2

