Math 250A Midterm 1

Grader SID: _____

i. _____

ii. _____

i. _____

i. _____

ii. _____

i. ______

ii. ____

- 1. (10 points) State whether each assertion is always true (T) or sometimes false (F).
 - (a) (1 point) _____ For any object x of any category \mathcal{C} , the hom-set Hom_{\mathcal{C}}(x, x) is non-empty.
 - (b) (1 point) _____ If a functor is an equivalence, it is a bijection on objects.
 - (c) (1 point) ____ The Yoneda functor $Y : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set}), Y(x) = \operatorname{Hom}_{\mathcal{C}}(x, -)$ is an equivalence.
 - (d) (1 point) _____ All objects of a groupoid are isomorphic to each other.
 - (e) (1 point) _____ The forgetful functor $F : \operatorname{Grp} \to \operatorname{Set}$ is full.
 - (f) (1 point) _____ The forgetful functor $F : \operatorname{Grp} \to \operatorname{Set}$ is faithful.
 - (g) (1 point) _____ The forgetful functor $F : AbGrp \to Grp$ is full.
 - (h) (1 point) _____ The forgetful functor $F : AbGrp \to Grp$ is faithful.
 - (i) (1 point) _____ The forgetful functor $F : AbGrp \rightarrow Grp$ preserves products.
 - (j) (1 point) _____ The forgetful functor $F : AbGrp \rightarrow Grp$ preserves coproducts.
- 2. (10 points) Let \mathcal{R} be the category with objects real numbers $r \in \mathbb{R}$ and hom-sets

$$\operatorname{Hom}_{\mathcal{R}}(r,s) = \begin{cases} \{\bullet\} & r \leq s \\ \emptyset & r > s \end{cases}$$

(a) (2 points) i. State (Yes or No) if the product (in the sense of category theory!) of the objects 2 and 3 exists in \mathcal{R} .

ii. If yes, calculate it.

(b) (2 points) i. State (Yes or No) if the coproduct of the objects 2 and 3 exists in \mathcal{R} .

- ii. If yes, calculate it.
- (c) (2 points) i. State (Yes or No) if the limit (in the sense of category theory!) of the diagram

$$\cdots \longrightarrow 1/4 \longrightarrow 1/3 \longrightarrow 1/2 \longrightarrow 1$$

exists in \mathcal{R} .

ii. If yes,	calculate it.	
-------------	---------------	--

(d) (2 points) i. State (Yes or No) if the colimit of the diagram

 $\cdots \longrightarrow 1/4 \longrightarrow 1/3 \longrightarrow 1/2 \longrightarrow 1$

exists in \mathcal{R} .

ii. If yes, calculate it.

(e) (2 points) i. State (Yes or No) if \mathcal{R} is equivalent to the opposite category \mathcal{R}^{op} .

ii. If yes, define an equivalence $F : \mathcal{R} \to \mathcal{R}^{op}$ by specifying its map on objects.

3. (8 points) For each diagram of abelian groups, calculate its limit. (a) (4 points)

(a) _____

ii. _____

i. _____

ii. _____

(b) _____

4. (8 points) For each diagram of abelian groups, calculate its colimit. (a) (4 points)

 $\mathbb{Z} \xrightarrow{1 \times} \mathbb{Z}/5\mathbb{Z}$ $\mathbb{Z} \xrightarrow{2 \times \left| \begin{array}{c} \mathbb{Z} \\ \mathbb{Z} \end{array} \right|}$

(a) _____

(b) _____

(a) _____

- 5. (12 points) Let CRing be the category of commutative rings.
 - (a) (2 points) What is the initial object of CRing?

(b) (4 points)

(b) (4 points)

Math 250A Midterm 1

(b) (2 points) What is the terminal object of CRing?

Recall for commutative rings R, S, their coproduct is the tensor product $R \otimes S$. (c) (4 points) Calculate the tensor product $\mathbb{Q} \otimes \mathbb{Z}/n\mathbb{Z}$ as a function of n.

- (d) (4 points) Calculate the tensor product $\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$ as a function of m, n.
- 6. (12 points) For a category C, consider the identity functor $Id_{\mathcal{C}} : C \to C$, i.e. the functor that takes each object $x \in \mathcal{C}$ to itself and each morphism $f: x \to y$ to itself.

For each listed category C, calculate the group Aut(Id_C) of automorphisms of Id_C, i.e. the group of invertible natural transformations $\phi : \mathrm{Id}_{\mathcal{C}} \to \mathrm{Id}_{\mathcal{C}}$.

- (a) (4 points) $C = \operatorname{Vect}_k$ the category of k-vector spaces over a field k.
- (b) (4 points) C = FinSet the category of finite sets.
- (c) (4 points) $\mathcal{C} = BH$ the classifying category of a group H, i.e. the category with one object with hom-set $\operatorname{Hom}_{BH}(\bullet, \bullet) = H$ and composition given by mutiplication in H.

(c) _____

(c) _____

(b) _____

(d) _____

(a) _____

(b) _____