\qquad
\qquad

1. (10 points) State whether each assertion is always true (T) or sometimes false (F).
(a) (1 point) ___ For any object x of any category \mathcal{C}, the hom-set $\operatorname{Hom}_{\mathcal{C}}(x, x)$ is non-empty.
(b) (1 point) ___ If a functor is an equivalence, it is a bijection on objects.
(c) (1 point) ___ The Yoneda functor $Y: \mathcal{C} \rightarrow \operatorname{Fun}\left(\mathcal{C}^{o p}, \operatorname{Set}\right), Y(x)=\operatorname{Hom}_{\mathcal{C}}(x,-)$ is an equivalence.
(d) (1 point) ___ All objects of a groupoid are isomorphic to each other.
(e) (1 point) __ The forgetful functor $F:$ Grp \rightarrow Set is full.
(f) (1 point) ___ The forgetful functor $F: \operatorname{Grp} \rightarrow$ Set is faithful.
(g) (1 point) ___ The forgetful functor $F:$ AbGrp \rightarrow Grp is full.
(h) (1 point) __ The forgetful functor $F:$ AbGrp \rightarrow Grp is faithful.
(i) (1 point) ___ The forgetful functor $F:$ AbGrp \rightarrow Grp preserves products.
(j) (1 point) ___ The forgetful functor $F:$ AbGrp \rightarrow Grp preserves coproducts.
2. (10 points) Let \mathcal{R} be the category with objects real numbers $r \in \mathbb{R}$ and hom-sets

$$
\operatorname{Hom}_{\mathcal{R}}(r, s)=\left\{\begin{array}{cc}
\{\bullet\} & r \leq s \\
\emptyset & r>s
\end{array}\right.
$$

(a) (2 points) i. State (Yes or No) if the product (in the sense of category theory!) of the objects 2 and 3 exists in \mathcal{R}.
ii. If yes, calculate it.
\qquad
ii. \qquad
(b) (2 points) i. State (Yes or No) if the coproduct of the objects 2 and 3 exists in \mathcal{R}.
i. \qquad
ii. If yes, calculate it.
ii. \qquad
(c) (2 points) i. State (Yes or No) if the limit (in the sense of category theory!) of the diagram

$$
\cdots \longrightarrow 1 / 4 \longrightarrow 1 / 3 \longrightarrow 1 / 2 \longrightarrow 1
$$

exists in \mathcal{R}.
\qquad
ii. If yes, calculate it.
(d) (2 points) i. State (Yes or No) if the colimit of the diagram

$$
\cdots \longrightarrow 1 / 4 \longrightarrow 1 / 3 \longrightarrow 1 / 2 \longrightarrow 1
$$

exists in \mathcal{R}.
i. \qquad

Math 250A Midterm 1

ii. If yes, calculate it.
ii. \qquad
(e) (2 points) i. State (Yes or No) if \mathcal{R} is equivalent to the opposite category $\mathcal{R}^{o p}$.
\qquad
ii. If yes, define an equivalence $F: \mathcal{R} \rightarrow \mathcal{R}^{o p}$ by specifying its map on objects.
ii. \qquad
3. (8 points) For each diagram of abelian groups, calculate its limit.
(a) (4 points)

(a) \qquad
(b) (4 points)

(b)
4. (8 points) For each diagram of abelian groups, calculate its colimit.
(a) (4 points)

(a)
(b) (4 points)

(b) \qquad
5. (12 points) Let CRing be the category of commutative rings.
(a) (2 points) What is the initial object of CRing?
\qquad

Math 250A Midterm 1

(b) (2 points) What is the terminal object of CRing?

(b)

\qquad
Recall for commutative rings R, S, their coproduct is the tensor product $R \otimes S$.
(c) (4 points) Calculate the tensor product $\mathbb{Q} \otimes \mathbb{Z} / n \mathbb{Z}$ as a function of n.
(c) \qquad
(d) (4 points) Calculate the tensor product $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$ as a function of m, n.
(d) \qquad
6. (12 points) For a category \mathcal{C}, consider the identity functor $\operatorname{Id}_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$, i.e. the functor that takes each object $x \in \mathcal{C}$ to itself and each morphism $f: x \rightarrow y$ to itself.
For each listed category \mathcal{C}, calculate the group $\operatorname{Aut}\left(\operatorname{Id}_{\mathcal{C}}\right)$ of automorphisms of $\operatorname{Id}_{\mathcal{C}}$, i.e. the group of invertible natural transformations $\phi: \mathrm{Id}_{\mathcal{C}} \rightarrow \mathrm{Id}_{\mathcal{C}}$.
(a) (4 points) $\mathcal{C}=\operatorname{Vect}_{k}$ the category of k-vector spaces over a field k.
(a)
(b) (4 points) $\mathcal{C}=$ FinSet the category of finite sets.
(b)
(c) (4 points) $\mathcal{C}=B H$ the classifying category of a group H, i.e. the category with one object \bullet with hom-set $\operatorname{Hom}_{B H}(\bullet, \bullet)=H$ and composition given by mutiplication in H.
(c)

