You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name :

1. (5 points) Find an invertible matrix P such that $A=P D P^{-1}$, where

$$
A=\left[\begin{array}{lll}
-2 & 0 & 2 \\
-8 & 2 & 4 \\
-4 & 0 & 4
\end{array}\right] \text { and } D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solution: We are told that A is similar to D, so we know A 's eigenvalues are 2 and 0 . To find a basis of eigenvectors of A, first we find bases for $\operatorname{Nul}(A-2 I)$ and $\operatorname{Nul}(A-0 I)=\operatorname{Nul}(A)$. Starting with $\operatorname{Nul}(A-2 I)$,

$$
\operatorname{Nul}(A-2 I)=\operatorname{Nul}\left[\begin{array}{ccc}
-4 & 0 & 2 \\
-8 & 0 & 4 \\
-4 & 0 & 2
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{ccc}
-4 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{ccc}
-2 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so for \mathbf{x} to satisfy $(A-2 I) \mathbf{x}=\mathbf{0}$, we need $2 x_{1}=x_{3}$, with x_{2} and x_{3} free. Hence $\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis for $\operatorname{Nul}(A-2 I)$.
Now computing $\operatorname{Nul}(A-0 I)$,

$$
\operatorname{Nul}(A-0 I)=\operatorname{Nul}\left[\begin{array}{lll}
-2 & 0 & 2 \\
-8 & 2 & 4 \\
-4 & 0 & 4
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & -4 \\
0 & 0 & 0
\end{array}\right]=\operatorname{Nul}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

so $x_{1}=x_{3}$ and $x_{2}=2 x_{3}$, with x_{3} free. Thus $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{Nul}(A-0 I)$.
Putting the eigenvectors of A in the same order as the corresponding eigenvalues listed in D, we get that

$$
P=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
2 & 0 & 1
\end{array}\right]
$$

satisfies $A=P D P^{-1}$.
2. (5 points) Determine if the following set of vectors is orthogonal:

$$
\left\{\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right]\right\}
$$

Solution: We must check that for every pair of vectors (say \mathbf{u} and \mathbf{v}) in the set, we have $\mathbf{u} \cdot \mathbf{v}=0$. Well,

$$
\begin{aligned}
& {\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]=2+8-10=0} \\
& {\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right]=8-8+0=0} \\
& {\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right]=4-4+0=0}
\end{aligned}
$$

So indeed the vectors are orthogonal.

