You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name : _

1. (5 points) Find an invertible matrix P such that $A = PDP^{-1}$, where

$$A = \begin{bmatrix} -2 & 0 & 2 \\ -8 & 2 & 4 \\ -4 & 0 & 4 \end{bmatrix} \text{ and } D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Solution: We are told that A is similar to D, so we know A's eigenvalues are 2 and 0. To find a basis of eigenvectors of A, first we find bases for Nul(A - 2I) and Nul(A - 0I) = Nul(A). Starting with Nul(A - 2I),

$$\operatorname{Nul}(A-2I) = \operatorname{Nul} \begin{bmatrix} -4 & 0 & 2\\ -8 & 0 & 4\\ -4 & 0 & 2 \end{bmatrix} = \operatorname{Nul} \begin{bmatrix} -4 & 0 & 2\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = \operatorname{Nul} \begin{bmatrix} -2 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

so for **x** to satisfy $(A - 2I)\mathbf{x} = \mathbf{0}$, we need $2x_1 = x_3$, with x_2 and x_3 free. Hence $\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$ is a

basis for $\operatorname{Nul}(A - 2I)$.

Now computing $\operatorname{Nul}(A - 0I)$,

$$\operatorname{Nul}(A - 0I) = \operatorname{Nul} \begin{bmatrix} -2 & 0 & 2 \\ -8 & 2 & 4 \\ -4 & 0 & 4 \end{bmatrix} = \operatorname{Nul} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{bmatrix} = \operatorname{Nul} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

so $x_1 = x_3$ and $x_2 = 2x_3$, with x_3 free. Thus $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$ is a basis for Nul(A - 0I).

Putting the eigenvectors of A in the same order as the corresponding eigenvalues listed in D, we get that

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$

satisfies $A = PDP^{-1}$.

2. (5 points) Determine if the following set of vectors is orthogonal:

$$\left\{ \begin{bmatrix} 2\\4\\-2 \end{bmatrix}, \begin{bmatrix} 1\\2\\5 \end{bmatrix}, \begin{bmatrix} 4\\-2\\0 \end{bmatrix} \right\}$$

Solution: We must check that for every pair of vectors (say \mathbf{u} and \mathbf{v}) in the set, we have $\mathbf{u} \cdot \mathbf{v} = 0$. Well,

 $\begin{bmatrix} 2\\4\\-2 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\5 \end{bmatrix} = 2 + 8 - 10 = 0,$ $\begin{bmatrix} 2\\4\\-2 \end{bmatrix} \cdot \begin{bmatrix} 4\\-2\\0 \end{bmatrix} = 8 - 8 + 0 = 0,$ $\begin{bmatrix} 1\\2\\5 \end{bmatrix} \cdot \begin{bmatrix} 4\\-2\\0 \end{bmatrix} = 4 - 4 + 0 = 0.$

So indeed the vectors are orthogonal.