You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name :

1. (5 points) Find all real eigenvalues of the following matrix A.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 1 \\
4 & 9 & 2
\end{array}\right]
$$

Solution: We need to solve $\operatorname{det}(A-\lambda I)=0$.

$$
A-\lambda I=\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
2 & 2-\lambda & 1 \\
4 & 9 & 2-\lambda
\end{array}\right]
$$

Cofactor expanding along the first row, we get

$$
(1-\lambda)\left((2-\lambda)^{2}-9\right)=0
$$

So $\lambda=1$ or

$$
\begin{aligned}
(2-\lambda)^{2}-9 & =0 \\
(2-\lambda)^{2} & =9 \\
2-\lambda & = \pm 3 \\
\lambda & =-1,5
\end{aligned}
$$

Thus, the real eigenvalues are $\lambda=1,-1,5$.
2. (5 points) Find the \mathcal{B}-matrix of the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ which satisfies

$$
\begin{aligned}
T\left(1-3 t^{2}+2\right) & =2-6 t^{2}+4 \\
T\left(2 t+t^{2}\right) & =6 t+3 t^{2} \\
T(1+t) & =0
\end{aligned}
$$

where \mathcal{B} is the basis $\left\{1-3 t^{2}+2,2 t+t^{2}, 1+t\right\}$ of \mathbb{P}_{2}.

Solution: Let $\mathbf{b}_{1}=1-3 t^{2}+2, \mathbf{b}_{2}=2 t+t^{2}$, and $\mathbf{b}_{3}=1+t$, so that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$.
Notice that

$$
T\left(\mathbf{b}_{1}\right)=2 \mathbf{b}_{1}, T\left(\mathbf{b}_{2}\right)=3 \mathbf{b}_{2}, T\left(\mathbf{b}_{1}\right)=0 \mathbf{b}_{1}
$$

so that

$$
\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right],\left[T\left(\mathbf{b}_{3}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Hence the \mathcal{B}-matrix of T is

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(Notice that this matrix is diagonal; that's just because \mathcal{B} was a basis of eigenvectors of T).

