You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name : \qquad

1. (5 points) Find a basis for the null space of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 4 & 2 & 3 \\
0 & -1 & 1 & 2 \\
2 & 5 & 7 & 12
\end{array}\right]
$$

Solution: The space Nul A is the collection of all $x \in \mathbb{R}^{4}$ such that $A x=0$. The standard method is to reduce A into RREF and find the general solution in vector form.

$$
\left[\begin{array}{cccc}
1 & 4 & 2 & 3 \\
0 & -1 & 1 & 2 \\
2 & 5 & 7 & 12
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & -3 & 3 & 6
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 6 & 11 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By the above calculation, we know the general solution has the form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-6 t-11 s \\
t+2 s \\
t \\
s
\end{array}\right]
$$

where $s, t \in \mathbb{R}$. In vector form, the general solution is $t b_{1}+s b_{2}$ where $b_{1}=\left[\begin{array}{c}-6 \\ 1 \\ 1 \\ 0\end{array}\right]$ and $b_{2}=\left[\begin{array}{c}-11 \\ 2 \\ 0 \\ 1\end{array}\right]$ and so a basis for $\operatorname{Nul} A$ is $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$.
2. (5 points) Use an inverse matrix to find $[x]_{\mathcal{B}}$ for the vector $x \in \mathbb{R}^{2}$ and basis \mathcal{B} of \mathbb{R}^{2} given below.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{l}
-3 \\
-4
\end{array}\right]\right\} \quad x=\left[\begin{array}{l}
6 \\
6
\end{array}\right]
$$

Solution: We recall that by definition

$$
x=P_{\mathcal{B}}[x]_{\mathcal{B}}
$$

where $P_{\mathcal{B}}=\left[\begin{array}{ll}3 & -3 \\ 2 & -4\end{array}\right]$ is the change of basis matrix from \mathcal{B} to the standard basis. By multiplying by $P_{\mathcal{B}}^{-1}$, the equation above is equivalent to

$$
[x]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} x
$$

We are now left to compute $P_{\mathcal{B}}^{-1}$ and multiply. We have

$$
\left[\begin{array}{ll|ll}
3 & -3 & 1 & 0 \\
2 & -4 & 0 & 1
\end{array}\right]=\left[\begin{array}{ll|ll}
1 & -1 & \frac{1}{3} & 0 \\
1 & -2 & 0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & -1 & \frac{1}{3} & 0 \\
0 & -1 & -\frac{1}{3} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll|ll}
1 & 0 & \frac{2}{3} & -\frac{1}{2} \\
0 & 1 & \frac{1}{3} & -\frac{1}{2}
\end{array}\right]
$$

so that

$$
P_{\mathcal{B}}^{-1}=\left[\begin{array}{ll}
\frac{2}{3} & -\frac{1}{2} \\
\frac{1}{3} & -\frac{1}{2}
\end{array}\right]
$$

Finally, we get

$$
[x]_{\mathcal{B}}=\left[\begin{array}{ll}
\frac{2}{3} & -\frac{1}{2} \\
\frac{1}{3} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
6 \\
6
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

