You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name:

1. (5 points) Determine if the set $D=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is once differentiable $\}$ of once differentiable functions is a subspace of the vector space $V=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ of all functions on \mathbb{R}.

Solution: Since differentiable functions are functions, $D \subseteq V$. Then we need to check three things to determine if D is a subspace of V. First, we must check that the zero vector is in D; second, we must check that D is closed under vector addition; and third, we must check that D is closed under multiplication by scalars.
The zero vector in V is the zero function $f(x)=0$, which is certainly differentiable. Thus, $\mathbf{0} \in D$.
Next, suppose that $f, g \in D$; i.e., that f and g are two differentiable functions. Our knowledge of calculus I tells us that if f and g are differentiable, so is $f+g$. Hence, $f+g \in D$.
Finally, let $f \in D$ and let $c \in \mathbb{R}$. Again, calculus I tells us that if f is differentiable and c is a constant, so is $c f$.
Thus, all three properties are satisfied, and D is a subspace of V.
2. (5 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \mapsto\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & 8 & 10 \\ -3 & -3 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Compute the volume of $T(B)$, where B is the box $-1 \leq x_{1} \leq 2,0 \leq x_{2} \leq 1,1 \leq x_{3} \leq 3$.

Solution: If $A=\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & 8 & 10 \\ -3 & -3 & 1\end{array}\right]$, the volume of $T(B)$ is equal to $|\operatorname{det}(A)| \cdot \operatorname{Vol}(B)$.
B is a parallelepiped with sides parallel to the axis, so its volume is

$$
\operatorname{Vol}(B)=(2-(-1)) \cdot(1-0) \cdot(3-1)=6
$$

Next we compute the determinant of A. If we subtract 2 times row 1 from row 2 and add 3 times row 1 to row 3 , we do not change the determinant of A, so we may instead compute the determinant of $A^{\prime}=\left[\begin{array}{ccc}1 & 3 & 5 \\ 0 & 2 & 0 \\ 0 & 6 & 16\end{array}\right]$.
Using the cofactor expansion in the first column, we see that

$$
\operatorname{det}\left(A^{\prime}\right)=1 \cdot \operatorname{det}\left(\left[\begin{array}{cc}
2 & 0 \\
6 & 16
\end{array}\right]\right)-0 \cdot \operatorname{det}\left(\left[\begin{array}{cc}
3 & 5 \\
6 & 16
\end{array}\right]\right)+0 \cdot \operatorname{det}\left(\left[\begin{array}{ll}
3 & 5 \\
2 & 0
\end{array}\right]\right)=1 \cdot 2 \cdot 16-0+0=32
$$

Thus, the volume of $T(B)$ is

$$
\operatorname{Vol}(T(B))=|\operatorname{det}(A)| \cdot \operatorname{Vol}(B)=\left|\operatorname{det}\left(A^{\prime}\right)\right| \cdot 6=32 \cdot 6=192
$$

