You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name : \qquad

1. (5 points) Find the inverse of the following matrix.

$$
\left[\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right]
$$

Solution: We proceed by reducing the matrix to RREF after augmenting it with the identity matrix.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
7 & 2 & 1 & 1 & 0 & 0 \\
0 & 3 & -1 & 0 & 1 & 0 \\
-3 & 4 & -2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 / 7 & 1 / 7 & 1 / 7 & 0 & 0 \\
0 & 3 & -1 & 0 & 1 & 0 \\
-3 & 4 & -2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 / 7 & 1 / 7 & 1 / 7 & 0 & 0 \\
0 & 3 & -1 & 0 & 1 & 0 \\
0 & 34 / 7 & -11 / 7 & 3 / 7 & 0 & 1
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{ccc|ccc}
7 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 / 3 & 0 & 1 / 3 & 0 \\
0 & 34 & -11 & 3 & 0 & 7
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
7 & 0 & 5 / 3 & 1 & -2 / 3 & 0 \\
0 & 1 & -1 / 3 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 / 3 & 3 & -34 / 3 & 7
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
7 & 0 & 0 & -14 & 56 & -35 \\
0 & 1 & 0 & 3 & -11 & 7 \\
0 & 0 & 1 / 3 & 3 & -34 / 3 & 7
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & 8 & -5 \\
0 & 1 & 0 & 3 & -11 & 7 \\
0 & 0 & 1 & 9 & -34 & 21
\end{array}\right]
\end{aligned}
$$

Thus, we see that the inverse matrix is

$$
\left[\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right] .
$$

2. (5 points) Let A be an invertible $n \times n$ matrix. Show that the linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one and onto.

Solution: First suppose that $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \in \mathbb{R}^{n}$. Applying A^{-1}, we get

$$
\mathbf{0}=A^{-1} \mathbf{0}=A^{-1} A \mathbf{x}=I_{n} \mathbf{x}=\mathbf{x}
$$

so we see that A is one-to-one.
Now, suppose that $\mathbf{b} \in \mathbb{R}^{n}$. We want to find a vector in \mathbb{R}^{n} that is sent to \mathbf{b} by A. Consider the vector $A^{-1} \mathbf{b}$. We have

$$
A\left(A^{-1} \mathbf{b}\right)=A A^{-1} \mathbf{b}=I_{n} \mathbf{b}=\mathbf{b}
$$

as desired. Thus, we see that A is onto.

