You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name :

1. (5 points) Find the general solution of the linear system corresponding to the following augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & 3 & 2 & 0 \\
2 & 4 & 0 & 2 \\
1 & 1 & -2 & 2
\end{array}\right]
$$

Solution: We apply row operations to get the matrix to row echelon form

$$
\left[\begin{array}{ccc|c}
1 & 3 & 2 & 0 \\
2 & 4 & 0 & 2 \\
1 & 1 & -2 & 2
\end{array}\right] \xrightarrow{\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}}}\left[\begin{array}{ccc|c}
1 & 3 & 2 & 0 \\
0 & -2 & -4 & 2 \\
0 & -2 & -4 & 2
\end{array}\right] \xrightarrow{R_{3} \rightarrow R_{3}-R_{2}}\left[\begin{array}{ccc|c}
1 & 3 & 2 & 0 \\
0 & -2 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We may go further and get to reduced row echelon form

$$
\left[\begin{array}{ccc|c}
1 & 3 & 2 & 0 \\
0 & -2 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2} \rightarrow-R_{2} / 2}\left[\begin{array}{ccc|c}
1 & 3 & 2 & 0 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{1} \rightarrow R_{1}-3 R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & -4 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to the system

$$
\begin{aligned}
& x_{1}-4 x_{3}=3 \\
& x_{2}+2 x_{3}=-1
\end{aligned}
$$

We may then write the general solution as

$$
\begin{aligned}
& x_{1}=4 x_{3}+3 \\
& x_{2}=-2 x_{3}-1 \\
& x_{3} \text { free }
\end{aligned}
$$

2. (5 points) Find all values of c for which the vector $\left[\begin{array}{l}3 \\ 3 \\ c\end{array}\right]$ lies in the span of $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right]$.

Solution: The problem is equivalent to asking for which values of c there exist solutions to

$$
x_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
c
\end{array}\right]
$$

The corresponding augmented matrix is

$$
\left[\begin{array}{cc|c}
1 & -1 & 3 \\
2 & 1 & 3 \\
3 & 3 & c
\end{array}\right]
$$

We apply row operations to get to row echelon form

$$
\left[\begin{array}{cc|c}
1 & -1 & 3 \\
2 & 1 & 3 \\
3 & 3 & c
\end{array}\right] \xrightarrow{\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}}}\left[\begin{array}{cc|c}
1 & -1 & 3 \\
0 & 3 & -3 \\
0 & 6 & c-9
\end{array}\right] \xrightarrow{R_{3} \rightarrow R_{3}-2 R_{2}}\left[\begin{array}{cc|c}
1 & -1 & 3 \\
0 & 3 & -3 \\
0 & 0 & c-3
\end{array}\right]
$$

This system is consistent if and only if the term $c-3$ to the right of the row of zeros is also zero. This means that the only value of c for which our vector belongs to the given span is $c=3$.

