You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name : \qquad

1. (5 points) Solve the given initial value problem, where $y(\pi)=e^{\pi}$ and $y^{\prime}(\pi)=0$.

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

Solution: The auxiliary equation can be constructed as:

$$
r^{2}-2 r+2=0
$$

From which, the roots can be calculated as:

$$
r_{1,2}=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i
$$

A (complex- valued) solution is

$$
y_{1}(t)=e^{r_{1} t}=e^{(1+i) t}=e^{t}(\cos t+i \sin t)=e^{t} \cos t+i e^{t} \sin t
$$

So the general solution can be written from the real and imaginary parts as:

$$
y(t)=c_{1} e^{t} \cos t+c_{2} e^{t} \sin t
$$

To determine c_{1} and c_{2}, we have to evaluate $y(t)$ and $y^{\prime}(t)$ at $t=\pi$, so first compute $y^{\prime}(t)$.

$$
y^{\prime}(t)=c_{1}\left(e^{t} \cos t-e^{t} \sin t\right)+c_{2}\left(e^{t} \sin t+e^{t} \cos t\right)
$$

Then, we evaluate both $y(t)$ and $y^{\prime}(t)$ at $t=\pi$.

$$
\begin{gathered}
y(\pi)=-c_{1} e^{\pi}=e^{\pi} \rightarrow c_{1}=-1 \\
y^{\prime}(\pi)=-c_{1} e^{\pi}-c_{2} e^{\pi}=0 \rightarrow c_{1}+c_{2}=0 \rightarrow c_{2}=-c_{1}=1
\end{gathered}
$$

Thus, the solution to the initial value problem is

$$
y(t)=-e^{t} \cos t+e^{t} \sin t
$$

2. (5 points) Find a particular solution to the differential equation:

$$
4 y^{\prime \prime}+11 y^{\prime}-3 y=-2 t e^{-3 t}
$$

Solution: The auxiliary equation is

$$
4 r^{2}+11 r-3=0
$$

From which, the roots can be calculated as:

$$
r_{1,2}=\frac{-11 \pm \sqrt{121+48}}{8}=-3, \frac{1}{4}
$$

Since $r=-3$ is a simple root of the auxiliary equation, the particular solution has the form

$$
y_{p}(t)=t\left(A_{1} t+A_{0}\right) e^{-3 t}
$$

To find A_{1} and A_{0}, we have to construct the first and second derivatives and plug them back into the equation, for that:

$$
\begin{gathered}
y(t)=\left(A_{1} t^{2}+A_{0} t\right) e^{-3 t} \\
y^{\prime}(t)=\left(-3 A_{1} t^{2}+2 A_{1} t-3 A_{0} t+A_{0}\right) e^{-3 t} \\
y^{\prime \prime}(t)=\left(9 A_{1} t^{2}-12 A_{1} t+2 A_{1}+9 A_{0} t-6 A_{0}\right) e^{-3 t}
\end{gathered}
$$

Plugging these back into the equation will give

$$
\left(-26 A_{1} t+8 A_{1}-13 A_{0}\right)=-2 t
$$

Thus,

$$
\begin{gathered}
-26 A_{1}=-2 \\
8 A_{1}-13 A_{0}=0
\end{gathered}
$$

which implies

$$
\begin{aligned}
A_{1} & =\frac{1}{13} \\
A_{0} & =\frac{8}{169}
\end{aligned}
$$

Finally, the particular solution can be written as

$$
y_{p}(t)=\left(\frac{1}{13} t+\frac{8}{169}\right) t e^{-3 t}
$$

