You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name :

1. (5 points) Find a least-squares solution of the inconsistent system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4 \\
1 & 2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]
$$

Solution: Recall that least-squares solutions of the inconsistent system $A \mathbf{x}=\mathbf{b}$ satisfy the equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. We compute those quantities.

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 4 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & 4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & 24
\end{array}\right] \\
A^{T} \mathbf{b}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 4 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]=\left[\begin{array}{c}
9 \\
12
\end{array}\right]
\end{gathered}
$$

Thus, we get that $3 x_{1}=9$ and $24 x_{2}=1 / 2$ so the least-squares solution is

$$
\hat{\mathbf{x}}=\left[\begin{array}{c}
3 \\
1 / 2
\end{array}\right]
$$

2. (5 points) Orthogonally diagonalize (Find an orthogonal matrix P and diagonal matrix D so that $A=$ $P D P^{-1}$) the matrix

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

which has eigenvalues $\lambda=2,5$.

Solution: We start by finding bases of the eigenspaces.

$$
\begin{gathered}
A-2 I=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} \text { is a basis of } E_{2} \\
A-5 I=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \text { is a basis of } E_{5}
\end{gathered}
$$

Note that the eigenvector for $\lambda=5$ is orthogonal to the eigenvectors for $\lambda=2$ (as will always be true), but the two eigenvectors for $\lambda=2$ are not orthogonal to each other and we must apply Gram-Schmidt. Applying Gram-Schmidt and normalizing gives us the following orthonormal basis of eigenvectors.

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \mathbf{u}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right], \mathbf{u}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Thus,

$$
P=\left[\begin{array}{ccc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

