You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name :

1. (5 points) Find an orthonormal basis of the subspace H of \mathbb{R}^{4} below.

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
4 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]\right\}
$$

Solution: Let v_{1}, v_{2}, v_{3} be the three vectors given above that span H . We apply the Gram-Schmidt algortihm.

$$
u_{1}=v_{1}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad u_{2}=v_{2}-\frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}=\left[\begin{array}{c}
-3 \\
2 \\
2 \\
-1
\end{array}\right] \quad u_{3}=v_{3}-\frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\left[\begin{array}{c}
1 \\
-5 / 3 \\
7 / 3 \\
-5 / 3
\end{array}\right]
$$

Then $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for H. To produce an orthonormal basis, we normalize these vectors and obtain the following orthonormal basis of H.

$$
\left\{\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \frac{1}{3 \sqrt{2}}\left[\begin{array}{c}
-3 \\
2 \\
2 \\
-1
\end{array}\right], \frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
1 \\
-5 / 3 \\
7 / 3 \\
-5 / 3
\end{array}\right]\right\}
$$

2. (5 points) Find a basis for the orthogonal complement of the following subspace of \mathbb{R}^{4}.

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
5 \\
4
\end{array}\right],\left[\begin{array}{c}
3 \\
7 \\
3 \\
12
\end{array}\right]\right\}
$$

Solution: The orthogonal complement of W is the null space of the following matrix.

$$
\left[\begin{array}{cccc}
1 & 2 & 5 & 4 \\
3 & 7 & 3 & 12
\end{array}\right]
$$

Row reducing gives

$$
\left[\begin{array}{cccc}
1 & 2 & 5 & 4 \\
3 & 7 & 3 & 12
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 5 & 4 \\
0 & 1 & -12 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 29 & 4 \\
0 & 1 & -12 & 0
\end{array}\right]
$$

Thus,

$$
\left\{\left[\begin{array}{c}
-29 \\
12 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

is a basis of W^{\perp}.

