You have 20 minutes to complete this quiz. To receive full credit, you must justify your answers.

Name : \qquad

1. (5 points) Solve the system of linear equations.

$$
\begin{aligned}
2 x_{1}+x_{2} & =\frac{1}{2} \\
x_{1}+x_{2} & =\frac{1}{2}
\end{aligned}
$$

Solution: The second equation can be rearranged to get

$$
x_{1}=\frac{1}{2}-x_{2}
$$

We plug this into the first equation to get

$$
2\left(\frac{1}{2}-x_{2}\right)+x_{2}=\frac{1}{2}
$$

that is,

$$
1-x_{2}=\frac{1}{2}
$$

This gives $x_{2}=\frac{1}{2}$.
Then, we plug that in to the second equation to get

$$
x_{1}+\frac{1}{2}=\frac{1}{2}
$$

or $x_{1}=0$. Thus, we have a unique solution

$$
x_{1}=0, x_{2}=\frac{1}{2}
$$

2. (5 points) Determine the values of C for which the following system of linear equations has one solution, no solutions, and infinitely many solutions.

$$
\begin{aligned}
& x_{1}+C x_{2}=1 \\
& 2 x_{1}+6 x_{2}=2
\end{aligned}
$$

Solution: Subtract twice the first equation from the second to get

$$
(6-2 C) x_{2}=0
$$

If $C \neq 3$, then $6-2 C \neq 0$, and we see that $x_{2}=0$. Thus, $x_{1}=1$ and we have a unique solution. If $C=3$, this gives $0=0$ and we see that the second equation is just twice the first. Thus, we can put $x_{2}=t$ as a free variable and $x_{1}=1-3 t$.
To summarize, we have a unique solution $\left(x_{1}=1, x_{2}=0\right)$ if $C \neq 3$ and infinitely many solutions if $C=3$.

