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1. (10 points) Let S be the subspace of R4 spanned by the following vectors.

v1 =


1
0
−1
−2

 , v2 =


2
−1
0
1


(a) (2 points) Check that the vectors v1 and v2 are orthogonal.

Solution: The dot product is

v1 · v2 = 2 + 0 + 0− 2 = 0.

(b) (4 points) Find the orthogonal projection of the vector w =


1
2
0
−1

 onto S.

Solution: We use the following formula.

projS(w) =
w · v1
v1 · v1

v1 +
w · v2
v2 · v2

v2

The relevant inner products are as follows.

w · v1 = 1 + 0 + 0 + 2 = 3

w · v2 = 2− 2 + 0− 1 = −1

v1 · v1 = 12 + 02 + (−1)2 + (−2)2 = 6

v2 · v2 = 22 + (−1)2 + 02 + 12 = 6

Therefore we have

projS(w) =
3

6


1
0
−1
−2

− 1

6


2
−1
0
1

 =
1

6


1
1
−3
−7

 .
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(c) (4 points) Find a basis for the orthogonal complement of S.

Solution: The orthogonal complement of S is the null space of the matrix[
1 0 −1 −2
2 −1 0 1

]
.

Substracting twice the first row from the second one we get[
1 0 −1 −2
0 −1 2 5

]
.

A basis for the nullspace is then 


1
2
1
0

 ,


2
5
0
1


 .



Math 54 Practice Exam 2 Exam date: 10/31/17

2. (10 points) Consider the matrix

A =

1 0 2
3 0 0
0 0 0


(a) (3 points) Find the eigenvalues of A.

Solution:

det(A− λI) = det

1− λ 0 2
3 −λ 0
0 0 −λ

 = −λ(−λ)(1− λ)

So, the eigenvalues are 0, 1.

(b) (4 points) Find bases of the eigenspaces of A.

Solution: We have that

A− 0I =

1 0 2
3 0 0
0 0 0

 ∼
1 0 0

0 0 1
0 0 0

 .

Thus,


0

1
0

 is a basis of E0.

We also have that

A− I =

0 0 2
3 −1 0
0 0 −1

 ∼
3 −1 0

0 0 1
0 0 0

 .
Thus,


1

3
0

 is a basis of E1

(c) (3 points) Is A diagonalizable?

Solution: By part (b), the sum of the dimensions of the eigenspaces of A is 2 which
is less than 3 so A is not diagonalizable.
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3. (10 points) Label the following statements as True or False. The correct answer is worth 1
point and a brief justification is worth 1 point. Credit for the justification can only be earned
in conjunction with a correct answer. No points will be awarded if it is not clear whether you
intended to mark the statement as True or False.

(a) (2 points) If T : Rn → Rn is a linear transformation, B and C are bases of Rn, and [T ]B
and [T ]C are the B and C matrices of T , then [T ]B = P

B←C
[T ]C where P

B←C
is the change of

coordinates matrix from C to B.

Solution: False.
The correct formula is [T ]B = P

B←C
[T ]C P

C←B
which is clearly different.

(b) (2 points) If B is an echelon form of the matrix A, then the pivot columns of B form a
basis of Col(A).

Solution: False.

For example, take A =

[
1 1
1 1

]
and B =

[
1 1
0 0

]
. The pivot column

[
1
0

]
of B is not

even in the column space of A.

(c) (2 points) If A is a 3× 3 diagonalizable matrix whose only eigenvalues are 1 and 2, then
(A− I)(A− 2I) = 0.

Solution: True.
We can write A = PDP−1 where D is a diagonal matrix with either two 1’s and
a 2 on the diagonal or two 2’s and a 1 on the diagonal. Since (A − I)(A − 2I) =
(PDP−1 − I)(PDP−1 − 2I) = P (D − I)(D − 2I)P−1, it is enough to check that

(D − I)(D − 2I) = 0. We can write this last term as

0 0 0
0 1 0
0 0 1

−1 0 0
0 0 0
0 0 0

 or0 0 0
0 0 0
0 0 1

−1 0 0
0 −1 0
0 0 0

 which are both 0.

(d) (2 points) The intersection of a subspace W of Rn and its orthogonal complement W⊥

always has dimension 0.

Solution: True.
If v is in the intersection, then v · v = 0 so v = 0. Hence, the intersection is always the
trivial subspace {0} which has dimension 0.

(e) (2 points) There is a linear transformation T : P3 → R2 with dim Nul(T ) = 1 where P3 is
the vector space of polynomials of degree at most 3.

Solution: False.
The rank theorem would give that dimP3 = 4 = dim Nul(T ) + dim Im(T ) = 1 +
dim Im(T ) so dim Im(T ) = 3. But, dim Im(T ) ≤ dimR2 = 2 since Im(T ) ⊂ R2.
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4. (a) (5 points) Suppose W is a subspace of Rn. Show that the transformation T : Rn → Rn

given by
v 7→ ProjW (v)

is a linear transformation, where ProjW (v) is the orthogonal projection of v onto W.

Solution: Every vector v ∈ Rn can be written uniquely as

v = v̂ + v⊥

where v̂ = ProjW (v) ∈W and v⊥ ∈W⊥ by the orthogonal decomposition theorem.

Let c ∈ R and v ∈ Rn. Then as cv = cv̂+cv⊥ and W⊥ is also a subspace of Rn, we must
have cProjW (v) = cv̂ = ProjW (cv) by uniqueness of the orthogonal decomposition.

Similarly, v + w = v̂ + v⊥ + ŵ + w⊥ = v̂ + ŵ + v⊥ + w⊥. Again, as W and W⊥

are both subspaces of Rn, uniqueness of the orthogonal decomposition implies that
ProjW (v + w) = v̂ + ŵ = ProjW (v) + ProjW (w). Thus, we have shown that T is a
linear transformation.

Alternatively, choose an orthonormal basis {u1, . . . , ur} of W. Then ProjW (v) =∑r
i=1

ui·v
ui·ui

ui. If w ∈ Rn and c ∈ R, we have ui ·(cv) = cui ·v and ui ·(v+w) = ui ·v+ui ·w
by the properties of the dot product so that

ProjW (cv) =

r∑
i=1

ui · (cv)

ui · ui
ui =

r∑
i=1

c
ui · v
ui · ui

ui = c

r∑
i=1

ui · v
ui · ui

ui

and

ProjW (v + w) =

r∑
i=1

ui · (v + w)

ui · ui
ui

=
r∑

i=1

ui · v + ui · w
ui · ui

ui

=
r∑

i=1

ui · v
ui · ui

ui +
r∑

i=1

ui · w
ui · ui

ui.

This implies that T is a linear transformation.

(b) (5 points) Show that there is always a basis B of Rn with respect to which T is diagonal.

Solution: We need B to be a basis of eigenvectors. Suppose that {w1, . . . , wk} is
an orthogonal basis of W and {v1, . . . , vn−k} is an orthogonal basis of W⊥. Then,
{w1, . . . , wk, v1, . . . , vn−k} is a basis of Rn since the vectors are all orthogonal. Further,
these are all eigenvectors since

T (wi) = ProjW (wi) = wi and T (vi) = ProjW (vi) = 0

since wi ∈W and vi ∈W⊥. Thus, B = {w1, . . . , wk, v1, . . . , vn−k} is one such basis.
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5. (10 points) Find an invertible matrix P and a matrix C of the form

[
a −b
b a

]
such that the

given matrix A has the form A = PCP−1.

A =

[
−11 −4
20 5

]

Solution: First, we need to find the eigenvalues of A. For that,

det(A− λI) = det(

[
−11− λ −4

20 5− λ

]
) = (−11− λ)(5− λ) + 20× 4 = λ2 + 6λ+ 25.

Thus, we have
λ2 + 6λ+ 25 = 0

And

λ =
−6±

√
36− 4× 25

2
= −3± 4i.

Now, we have to calculate the corresponding eigenvector for λ = −3− 4i. We have

A− λI =

[
−8 + 4i −4

20 8 + 4i

]
∼
[
20 8 + 4i
0 0

]
.

Thus, we get

20x1 + (8 + 4i)x2 = 0→ x1 =
−2− i

5
x2

and an eigenvector is

v =

[
−2

5 −
i
5

1

]
.

P can then be written as

P =
[
Rev Imv

]
=

[
−2

5 −1
5

1 0

]
And finally, C can be written as

C =

[
a −b
b a

]
=

[
−3 −4
4 −3

]
.
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6. (10 points) Let A =


1 0 0
0 1 0
0 0 0
1 1 1

 .
(a) (5 points) Find an orthogonal basis for ColA.

Solution: The columns of A are visibly linearly independent, so we use the Gram-
Schmidt process to turn the basis of ColA given by the columns of A into an orthogonal
basis {v1, v2, v3} of ColA. We find

v1 =


1
0
0
1

 ;

v2 =


0
1
0
1

− 1

2
v1 =


−1/2

1
0

1/2

 ;

v3 =


0
0
0
1

− 1

2
v1 −

1

3
v2 =


−1/2 + 1/6
−1/3

0
1− 1/2− 1/6

 =


−1/3
−1/3

0
1/3

 .
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(b) (5 points) Find a 3× 3 invertible upper triangular matrix R such that A = QR where Q
is a matrix whose columns form an orthogonal basis of Col(A).

Solution: Set Q =


1 −1/2 −1/3
0 1 −1/3
0 0 0
1 1/2 1/3

 . Q satisfies the desired condition by part (a),

so since we want A = QR, we need QTA = QTQR. Because the columns of Q are
orthogonal, we have

QTQ =

v1 · v1 0 0
0 v2 · v2 0
0 0 v3 · v3

 =

2 0 0
0 3/2 0
0 0 1/3

 .
Then

R = (QTQ)−1QTA

=

1/2 0 0
0 2/3 0
0 0 3

 1 0 0 1
−1/2 1 0 1/2
−1/3 −1/3 0 1/3




1 0 0
0 1 0
0 0 0
1 1 1


=

1/2 0 0
0 2/3 0
0 0 3

2 1 1
0 3/2 1/2
0 0 1/3


=

1 1/2 1/2
0 1 1/3
0 0 1

 .
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7. (a) (5 points) Suppose that M is an n × n matrix such that MT = M . If v1 and v2 are
eigenvectors of M for eigenvalues λ1 and λ2, respectively, with λ1 6= λ2, show that v1 and
v2 are orthogonal.

Solution: We have

λ1(v1 · v2) = Mv1 · v2 = v1 ·MT v2 = v1 ·Mv2 = λ2(v1 · v2).

Thus,
(λ1 − λ2)(v1 · v2) = 0,

and we must have v1 · v2 = 0 since λ1 − λ2 6= 0.

(b) (5 points) Suppose that A and B are n× n matrices. Suppose B = {b1, . . . , bn} is a basis
of Rn such that each bi is an eigenvector of both A and B. Show that AB = BA.

Solution: Let P be the matrix whose columns are b1, . . . , bn. Then A = PD1P
−1

and B = PD2P
−1 where D1 and D2 are diagonal matrices. Then,

AB = PD1P
−1PD2P

−1 = PD1D2P
−1 = PD2D1P

−1 = PD2P
−1PD1P

−1 = BA

as diagonal matrices always commute with each other since their multiplication is
simply given by multiplying the entries on the diagonal.



Math 54 Practice Exam 2 Exam date: 10/31/17

Extra space.
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Extra space.


