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1. (10 points) Consider the matrix

Ax =

1 1 2
x 2 3
0 1 1


(a) (5 points) Find all values of x such Ax is invertible.

Solution: We compute the determinant.∣∣∣∣∣∣
1 1 2
x 2 3
0 1 1

∣∣∣∣∣∣ = −
∣∣∣∣1 2
x 3

∣∣∣∣+

∣∣∣∣1 1
x 2

∣∣∣∣ = x− 1

Therefore, Ax is invertible as long as x 6= 1.

(b) (5 points) Compute A−12 .

Solution: We proceed by row reduction.1 1 2 1 0 0
2 2 3 0 1 0
0 1 1 0 0 1

 ∼
1 1 2 1 0 0

0 0 −1 −2 1 0
0 1 1 0 0 1

 ∼
1 0 1 1 0 −1

0 1 1 0 0 1
0 0 1 2 −1 0



∼

1 0 0 −1 1 −1
0 1 0 −2 1 1
0 0 1 2 −1 0


Therefore,

A−12 =

−1 1 −1
−2 1 1
2 −1 0

 .
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2. (10 points) Consider the matrices

A =

 5 −1 2
−1 5 2
2 2 2

 B =

 5 −1 2
−1 5 2
2 −1 2


(a) (2 points) Which of these matrices is orthogonally diagonalizable?

Solution: A is orthogonally diagonalizable since A is symmetric. B is not orthogo-
nally diagonalizable since B is not symmetric.

(b) (2 points) Find the eigenvalues of the orthogonally diagonalizable matrix from part (a)

Solution: We have

det(A− λI) =

∣∣∣∣∣∣
5− λ −1 2
−1 5− λ 2
2 2 2− λ

∣∣∣∣∣∣
= (5− λ)

∣∣∣∣5− λ 2
2 2− λ

∣∣∣∣+

∣∣∣∣−1 2
2 2− λ

∣∣∣∣+ 2

∣∣∣∣−1 5− λ
2 2

∣∣∣∣
= (5− λ)(λ2 − 7λ+ 6) + λ− 6 +−24 + 4λ

= −λ3 + 12λ2 − 36λ

−λ(λ2 − 12λ+ 36) = −λ(λ− 6)2

so the eigenvalues are 0 and 6.
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(c) (6 points) Find an orthogonal matrix P consisting of eigenvectors of the orthogonally
diagonalizable matrix from part (a).

Solution: We start by finding an orthogonal basis of each eigenspace. For E0, we
find the null space of A. 5 −1 2

−1 5 2
2 2 2

 ∼
1 −5 −2

0 24 12
0 12 6

 ∼
1 0 1/2

0 2 1
0 0 0



so


−1
−1
2

 is an orthogonal basis for E0. For E6, we find the null space of A− 6I

−1 −1 2
−1 −1 2
2 2 −4

 ∼
1 1 −2

0 0 0
0 0 0



Thus,


 1
−1
0

 ,
2

0
1

 is a basis for E6. Applying the Gram-Schmidt algorithm gives

that


 1
−1
0

 ,
1

1
1

 is an orthogonal basis for E6. Normalizing, we get

P =

−1/
√

6 1/
√

2 1/
√

3

−1/
√

6 −1/
√

2 1/
√

3

2/
√

6 0 1/
√

3


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3. (10 points) Label the following statements as True or False. The correct answer is worth 1
point and a brief justification is worth 1 point. Credit for the justification can only be earned
in conjunction with a correct answer. No points will be awarded if it is not clear whether you
intended to mark the statement as True or False.

(a) (2 points) If σ is the largest singular value of an m× n matrix A, then ‖Av‖ ≤ σ‖v‖ for
all v ∈ Rn where ‖u‖ =

√
u · u.

Solution: True.
By the singular value decomposition, there is an orthonormal basis {v1, . . . , vn} of Rn
and an orthonormal basis {u1, . . . , um} of Rm such that Avi = σiui and σi ≤ σ are
the singular values of A. Then, For any v = c1v1 + . . .+ cnvn, we have

Av ·Av = c21σ
2
1 + . . .+ c2nσ

2
n ≤ σ2(c21 + . . .+ c2n) = σ2v · v

as desired.

(b) (2 points) If A and B are similar n × n matrices so that A = PBP−1, then Py(t) is a
solution to x′(t) = Ax(t) for any y(t) such that y′(t) = By(t).

Solution: True.
We have y′(t) = By(t) = P−1APy(t). After applying P to both sides, we get Py′(t) =
APy(t) as we needed since d

dtPy(t) = Py′(t).

(c) (2 points) Only square matrices can be squared.

Solution: True.
In order for A2 to make sense for an m× n matrix, we must have m = n.

(d) (2 points) If 〈·, ·〉 is an inner product on Rn such that 〈v, v〉 = v · v for all v ∈ Rn then
〈u,w〉 = u · w for all u,w ∈ Rn.

Solution: True.
By properties of inner products, we have 〈u,w〉 = 1

2 (〈u+ w, u+ w〉 − 〈u, u〉 − 〈w,w〉) =
1
2((u+ w) · (u+ w)− u · u− w · w) = u · w.

(e) (2 points) The set of solutions to y′′′ + by′′ + cy′ + dy = 0 is always a vector space of
dimension three.

Solution: True.
The solutions of a homogeneous equation always form a vector space so we need to
check the dimension. The solutions of this equation can recast as solutions to an
equation of the form x′(t) = Ax(t) where A is 3× 3 matrix by setting x1 = y, x2 = y′,
and x3 = y′′. Such an equation always has a 3-dimensional solution space spanned by
the columns of a fundamental matrix (such as eAt).
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4. (10 points) Consider the function on R3 given by

x ? y =
3∑

m=1

mxmym

for x, y ∈ R3.

(a) (3 points) Show that this is an inner product on R3.

Solution: We need to check four properties: x ? y = y ? x, (x+ v) ? y = x ? y + v ? y,
(cx) ? y = c(x ? y), and x ? x ≥ 0 and only zero when x = 0 for x, y, v ∈ R3 and c ∈ R.

For the first, we have

x ? y =

3∑
m=1

mxmym =

3∑
m=1

mymxm = y ? x.

For the second,

(x+ v) ? y =
3∑

m=1

m(xm + vm)ym =
3∑

m=1

mxmym +
3∑

m=1

mvmym = x ? y + v ? y.

For the third,

(cx) ? y =
3∑

m=1

mcxmym = c

(
3∑

m=1

mxmym

)
= c(x ? y).

For the last

x ? x =

3∑
i=1

mx2m ≥ 0

since each term is positive and equal to zero only when x21 = x22 = x23 = 0, i.e., x = 0.
We have verified that this is an inner product.
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(b) (4 points) Find an orthogonal basis for V = Span


1

1
1

 ,
 0

1
−1

 with respect to the ?

inner product.

Solution: We apply the Gram-Schmidt procedure. We have

u1 =

1
1
1


and

u2 =

 0
1
−1

−
1

1
1

 ?
 0

1
−1


1

1
1

 ?
1

1
1


1

1
1

 =

 0
1
−1

− −1

6

1
1
1

 =
1

6

 1
7
−5



form an orthogonal basis of V

(c) (3 points) Find the closest vector in V (from (b)) to x =

0
0
1

 when the distance is

computed with the ? inner product.

Solution: The closest vector is the orthogonal projection. To simplify computations,
we replace u1, u2 from part (b) with the orthogonal basis w1 = u1, w2 = 6u2. We have

ProjV (x) =
x ? w1

w1 ? w1
w1 +

x ? w2

w2 ? w2
w2 =

1

2
w1 −

5

58
w2 =

1

58

24
−6
54

 .
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5. (10 points) Suppose that U is an orthogonal n× n matrix that is orthogonally diagonalizable.

(a) (4 points) Show that the only eigenvalues of U are ±1.

Solution: Since U is orthogonal, UT = U−1. Since U is orthogonal diagonalizable, U
is symmetric UT = U . Thus, we have U2 = I. If v is an eigenvector with eigenvalue
λ, we have

λ2v = U2v = v

so λ2 = 1. That is, λ = ±1 as desired.

(b) (3 points) Show that if U has only 1 as an eigenvalue then U is the n×n identity matrix.

Solution: In that case, we can diagonalize U to get

U = PIP−1 = PP−1 = I

since the only eigenvalue of U is 1.

(c) (3 points) Give an example of an orthogonal and orthogonally diagonalizable matrix U
with entries other than ±1.

Solution: One simple example is

U =
1√
2

[
−1 1
1 1

]
.
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6. (10 points) Suppose that y1 and y2 are solutions to y′′ + b(t)y′ + c(t)y = 0 and W (t) =
W [y1, y2](t) is their Wronskian.

(a) (4 points) Using only the defintion of W (t), show that W (t) satisfies the equation
W ′(t) = −b(t)W (t). Deduce from your calculation that if W (0) 6= 0 then W (t) 6= 0 for all
t.

Solution: We have that

W (t) =

∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = y1(t)y
′
2(t)− y2(t)y′1(t).

Differentiating, we get

W ′(t) = y′1(t)y
′
2(t) + y1(t)y

′′
2(t)− y′2(t)y′1(t)− y2(t)y′′1(t)

= y1(t)
[
− b(t)y′2(t)− c(t)y2(t)

]
− y2(t)

[
− b(t)y′1(t)− c(t)y1(t)

]
= b(t)(y′1(t)y2(t)− y′2(t)y1(t) = −b(t)W (t)

as desired. This computation shows that

W (t) = Ce−
∫ t
0 b(s) ds

is never zero if W (0) = C 6= 0.

(b) (2 points) Show that if y1(t) 6= 0 then(
y2
y1

)′
=

W

(y1)2

Solution: We compute (
y2
y1

)′
=
y′2y1 − y′1y2

(y1)2
=

W

(y1)2

using the product rule.
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(c) (4 points) Given that y1(t) = e−t
2

is a solution to y′′+ 4ty′+ (4t2 + 2)y = 0, find another
linearly independent solution using parts (a) and (b).

Solution: By part (a),

W (t) = Ce−
∫ t
0 b(s) ds = Ce−2t

2
.

By rescaling the unknown linearly independent solution, we can assume that C = 1.
By part (b), we get that (

y2
y1

)′
=
e−2t

2

e−2t2
= 1.

Thus, we can take
y2(t) = ty1(t) = te−t

2
.
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7. (10 points) Consider the differential equation y′′′′ − 6y′′′ + 14y′′ − 14y′ + 5y = 0.

(a) (6 points) Find the general solution of the above differential equation. (Hint: r = 2 + i is
a root of the characteristic polynomial.)

Solution: By the standard substitution x1 = y, x2 = y′, x3 = y′′, and x4 = y′′′, we
can translate this to an equation of the form x′(t) = Ax(t) where A is 4 × 4 matrix
with characteristic polynomial is r4 − r3 + 14r2 − 14r + 5 = 0. We know that 2 + i
is a root so 2 − i must also be a root since we are working with a real polynomial.
Therefore, (r − (2 + i))(r − (2− i)) = r2 − 4r + 5 divides the polynomial. Doing long
division gives that

r4 − r3 + 14r2 − 14r + 5 = (r2 − 4r + 5)(r2 − 2r + 1)

so the only other root is the double root r = 1. Thus, the general solution is

y(t) = C1e
2t cos(t) + C2e

2t sin(t) + C3e
t + C4te

t.

(b) (4 points) Solve the initial value problem where y(0) = 1, y′(0) = 3, y′′(0) = 5, and
y′′′(0) = 5.

Solution: From the general solution in the first part, we calculate

y′(t) = (2C1 + C2)e
2t cos(t) + (−C1 + 2C2)e

2t sin(t) + (C3 + C4)e
t + C4te

t,

y′′(t) = (3C1 + 4C2)e
2t cos(t) + (−4C1 + 3C2)e

2t sin(t) + (C3 + 2C4)e
t + C4te

t,

y′′′(t) = (2C1 + 11C2)e
2t cos(t) + (−11C1 + 2C2)e

2t sin(t) + (C3 + 3C4)e
t + C4te

t.

By putting t = 0, we get a system of linear equations corresponding to an augmented
matrix which we row reduce below.

1 0 1 0 1
2 1 1 1 3
3 4 1 2 5
2 11 1 3 5

→


1 0 1 0 1
0 1 −1 1 1
0 4 −2 2 2
0 11 −2 3 3

→


1 0 1 0 1
0 1 −1 1 1
0 0 2 −2 −2
0 0 10 −8 −8



−→


1 0 1 0 1
0 1 −1 1 1
0 0 2 −2 2
0 0 0 2 2

→


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

 .
So the solution to the IVP is y(t) = e2t cos(t) + tet.
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8. (a) (4 points) Find a basis of solutions to the system

x′(t) =

[
2 −1
0 1

]
x(t)

Solution: Since A =

[
2 −1
0 1

]
is upper triangular, its eigenvalues are the entries on

the diagonal. We compute the eigenspaces.

E1 = Nul(A− Id) = Nul

[
1 −1
0 0

]
= span

[
1
1

]
E2 = Nul(A− 2Id) = Nul

[
0 −1
0 −1

]
= span

[
1
0

]
Therefore a basis of solutions to the given system is{

et
[
1
1

]
, e2t

[
1
0

]}

(b) (6 points) Find a particular solution to

x′(t) =

[
2 −1
0 1

]
x(t) +

[
t−1e2t

0

]

Solution: Variation of parameters tells us that we can find a solution of the form
X(t)v(t) where

X(t) =

[
et e2t

et 0

]
and v(t) is a vector satisfying

X(t)v′(t) =

[
t−1e2t

0

]

We therefore find that v′(t) =

[
0
t−1

]
, and so we can take v(t) =

[
0

log |t|

]
. This gives

us the solution

X(t)v(t) =

[
e2t log |t|

0

]
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9. (10 points) Consider the heat equation

∂u

∂t
= 2

∂2u

∂x2
.

(a) (6 points) Find the solution defined for 0 ≤ x ≤ π and t ≥ 0 that satisfies u(0, t) =
u(π, t) = 0 and u(x, 0) = sin(3x)− 5 sin(5x).

Solution: The general solution with L = π and β = 2 and Dirichlet boundary condi-
tion is given by

∞∑
n=1

cn sin(nx)e−2n
2t.

For u(x, 0) = sin(3x)− 5 sin(5x), we must have that the cn are the coefficients of the
Fourier sine series of this function. However, sin(3x)−5 sin(5x) is already a sine series
so we get c3 = 1, c5 = −5 and all the other coefficients vanish. Therefore,

u(x, t) = sin(3x)e−18t − 5 sin(5x)e−50t.

(b) (4 points) Suppose that v(x, t) is the solution defined for 0 ≤ x ≤ π and t ≥ 0 that
satisfies v(0, t) = 0, v(π, t) = 1 and v(x, 0) = sin(3x)− 5 sin(5x). Find lim

t→∞
v(x, t).

Solution: We can write
v(x, t) = w(x, t) +

x

π

where w(x, t) is a solution to the heat equation satisfying the Dirichlet boundary
conditions and w(x, 0) = sin(3x) − 5 sin(5x) − x

π . Thus, we see that v(x, t) will be of
the form

v(x, t) =
x

π
+

∞∑
n=1

bn sin(nx)e−2n
2t

where the bn are the coefficients of the Fourier sine series for w(x, 0). Therefore,

lim
t→∞

v(x, t) =
x

π
+ lim
t→∞

∞∑
n=1

bn sin(nx)e−2n
2t =

x

π
+ 0 =

x

π
.
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10. (10 points) Consider the function ζ(s) =
∑∞

n=1
1
ns . Euler famously computed ζ(2) = π2/6 in

1738. Evaluate ζ(4) by computing the Fourier series of f : [−π, π]→ R, given by f(x) = π4−x4.
You may assume Euler’s result.

Solution: Since f is even, bn = 0 for all n. We now compute the other coefficients. We
have

a0 =

∫ π

−π
(π4 − x4) dx = π4x− x5

5

∣∣∣∣π
−π

= 2π5 − 2π5

5
=

8π5

5

and for n ≥ 1,∫ π

−π
(π4 − x4) cosnx dx = π4

∫ π

−π
cosnx dx−

∫ π

−π
x4 cosnx dx

= −
[
x4 sinnx

n

∣∣∣∣π
−π
− 4

n

∫ π

−π
x3 sinnx dx

]
=

4

n

[
−x

3 cosnx

n

∣∣∣∣π
−π

+
3

n

∫ π

−π
x2 cosnx dx

]
=

4

n

[
−
(
π3 cosnπ − (−π)3 cos(−nπ)

n

)
+

3

n

∫ π

−π
x2 cosnx dx

]
=

4

n

[
−
(

(−1)n2π3

n

)
+

3

n

∫ π

−π
x2 cosnx dx

]
=

(−1)n+18π3

n2
+

12

n2

[
x2 sinnx

n

∣∣∣∣π
−π
− 2

n

∫ π

−π
x sinnx dx

]
=

(−1)n+18π3

n2
− 24

n3

[
−x cosnx

n

∣∣∣∣π
−π

+
1

n

∫ π

−π
cosnx dx

]
=

(−1)n+18π3

n2
+

24

n3

[(
π cosnπ − (−π) cos(−nπ)

n

)]
= (−1)n+1π

8(n2π2 − 6)

n4
.

Thus,

4π4

5
− 8

∞∑
n=1

(−1)n
n2π2 − 6

n4
cosnx

is the Fourier series of f, and because the 2π-periodic extension of f is piecewise differen-
tiable and continuous at π with f(π) = 0, we have

0 = f(π) =
4π4

5
− 8π2

∞∑
n=1

1

n2
+ 48

∞∑
n=1

1

n4
.

Rearranging the above, it follows that

ζ(4) =

∞∑
n=1

1

n4
=

1

48

(
8π2

∞∑
n=1

1

n2
− 4π4

5

)
=

1

48

(
8π2 · ζ(2)− 4π4

5

)
=
π4

90
.



Math 54 Practice Final Exam Exam date: 12/14/17

Extra space.



Math 54 Practice Final Exam Exam date: 12/14/17

Extra space.



Math 54 Practice Final Exam Exam date: 12/14/17

Extra space.


