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1. (10 points) Consider the 2× 2 matrix

Ma =

[
a 2− a

2 + a −a

]
.

(a) (2 points) Find all real values of a such that Ma is invertible.

Solution: The determinant of Ma is a(−a)− (2− a)(2 + a) = −4, so Ma is invertible
for any value of a.

(b) (2 points) Find all real values of a such that Ma is diagonalizable.

Solution: The characteristic polynomial of Ma is χMa(λ) = λ2 − 4, which has two
distinct real roots, so Ma is diagonalizable for all a.

(c) (4 points) Find all eigenvectors of M1.

Solution: We found in (b) that the eigenvalues of M1 were ±2, so we must find a
basis for Nul(M1 − 2I) and Nul(M1 + 2I).

We have

E−2 = Nul(M1 + 2I) = Nul

([
3 1
3 1

])
= Nul

([
3 1
0 0

])
,

which is the set of vectors

[
x1
x2

]
such that 3x1 = x2. Thus, an eigenvector for λ = −2

is v1,−2 =

[
−1
3

]
.

Similarly,

E2 = Nul(M1 − 2I) = Nul

([
−1 1
3 −3

])
= Nul

([
1 −1
0 0

])
,

so an eigenvector for λ = 2 is v1,2 =

[
1
1

]
.

Thus, the eigenvectors of M1 are the vectors of the form cv1,−2 and the vectors of the
form cv1,2, where c ∈ R is nonzero.
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(d) (2 points) Is M1 orthogonal?

Solution: No.
By definition, M1 is orthogonal if MT

1 M1 = I. We compute:

MT
1 M1 =

[
1 3
1 −1

] [
1 1
3 −1

]
=

[
6 −2
−2 2

]
which is not the identity matrix so M1 is not orthogonal.

Alternatively, we found in part (a) that the determinant of Ma is always −4. An
orthogonal matrix has determinant ±1 so Ma can never be orthogonal.
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2. (10 points) In this problem, you will compute a singular value decomposition of the following
matrix.

A =

1 2
1 2
1 2


That is, you will find a 3 × 2 matrix Σ with nonnegative entries whose only nonzero entries
are Σ11 and Σ22, a 3 × 3 orthogonal matrix U , and a 2 × 2 orthogonal matrix V such that
A = UΣV T .

(a) (3 points) Find the matrix Σ.

Solution: The diagonal entries of Σ are the square roots of the eigenvalues of ATA.
We compute

ATA =

[
1 1 1
2 2 2

]1 2
1 2
1 2

 =

[
3 6
6 12

]
which has characteristic equation λ2 − 15λ so the eigenvalues of ATA are 15 and 0.
Thus, we have

Σ =

√15 0
0 0
0 0

 .

(b) (3 points) Find the matrix V .

Solution: The columns of V are an orthonormal basis of eigenvectors of ATA. An

eigenvector for the eigenvalue λ = 15 is

[
1
2

]
and an eigenvector for the eigenvalue

λ = 0 is

[
2
−1

]
. Normalizing, we have

V =
1√
5

[
1 −2
2 1

]
.
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(c) (4 points) Find the matrix U .

Solution: The columns of U come from extending {Avi/σi} where σi are the nonzero
singular values of A to an orthonormal basis of R3. Thus, the first column of U must
be

1√
15
A

[
1/
√

5

2/
√

5

]
=

1√
3

1
1
1


and we need to extend this to any orthonormal basis of R3. Thus, we can take

U =

1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −
√

2/3

1/
√

3 −1/
√

2 1/
√

6


among infinitely many other possibilities.
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3. (10 points) Label the following statements as True or False. The correct answer is worth 1
point and a brief justification is worth 1 point. Credit for the justification can only be earned
in conjunction with a correct answer. No points will be awarded if it is not clear whether you
intended to mark the statement as True or False.

(a) (2 points) Suppose A is an n × n matrix. The linear homogeneous system of equations
x′(t) = Ax(t) has n linearly independent solutions only when A is diagonalizable.

Solution: False.
The system of equations always has n linearly independent solutions. For example,
the columns of eAt are one such set of solutions.

(b) (2 points) Suppose that A is a symmetric n × n matrix and W is a subspace of Rn such
that Aw ∈W for all w ∈W . Then, Av ∈W⊥ for all v ∈W⊥ where W⊥ is the orthogonal
complement of W with respect to the dot product.

Solution: True.
If v ∈ W⊥ and w ∈ W , then Av · w = v · ATw = v · Aw = 0 since Aw ∈ W . Thus,
Av ∈W⊥ since it is orthogonal to every vector in W .

(c) (2 points) Suppose that v1(t), . . . , vn(t) are vector functions taking values in Rn. If the
Wronskian W [v1, . . . , vn](t) is equal to 0 for all t ∈ R, then v1(t), . . . , vn(t) are linearly
dependent.

Solution: False.

Consider v1(t) =

[
1
0

]
and v2(t) =

[
t
0

]
. Then, the Wronskian always vanishes, but

these functions are linearly independent as c1v1(t) + c2v2 = 0 implies that c1 + c2t = 0
for all t which further implies c1 = c2 = 0 by plugging in t = 0 and t = 1.

(d) (2 points) Every symmetric n× n matrix with real entries is similar to a diagonal matrix
with real entries.

Solution: True.
This is a corollary of the spectral theorem, which says that every real symmetric matrix
is orthogonally diagonalizable and has real eigenvalues.

(e) (2 points) The set of solutions to ay′′+ by′+ cy = 0 is a two-dimensional vector space for
any a, b, c ∈ R.

Solution: False.
The statement is true when a 6= 0. However, we could take a = b = 0 and c = 1 and
the only solution would be y = 0.
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4. (10 points) Suppose that P3 is the vector space of polynomials of degree at most three and
E3 ⊂ P3 the set of even polynomials of degree at most three, i.e., E3 consists of p(x) ∈ P3 such
that p(−x) = p(x).

(a) (3 points) Show that E3 is a subspace of P3.

Solution: We must show that E3 satisfies the three properties of a subspace. The
zero polynomial is even so 0 ∈ E3. Suppose that p, q ∈ E3. Then,

(p+ q)(−x) = p(−x) + q(−x) = p(x) + q(x) = (p+ q)(x)

so p+ q ∈ E3. Finally, if p ∈ E3 and c ∈ R, then

(cp)(−x) = cp(−x) = cp(x) = (cp)(x)

so cp ∈ E3.

(b) (2 points) What is the dimension of E3?

Solution: Suppose that p(x) = a3x
3 + a2x

2 + a1x + a0 ∈ E3. Then, p(x) = p(−x)
gives that

a3x
3 + a2x

2 + a1x+ a0 = −a3x3 + a2x
2 − a1x+ a0

or
2a3x

3 + 2a1x = 0

which implies that a3 = a1 = 0 since x3 and x are linearly independent. Thus, we have
seen that E3 ⊂ span{1, x2}. But, 1 and x2 are both even so we have E3 = span{1, x2}.
Since 1 and x2 are linearly independent, this shows that dimE3 = 2.

(c) (5 points) Compute the orthogonal projection of x to E3 when P3 is equipped with the
inner product 〈p, q〉 =

∫ 1
0 p(x)q(x) dx.

Solution: We first need an orthogonal basis of E3. We apply Gram-Schmidt to
{1, x2}. Then, we get that

u1 = 1

u2 = x2 − 〈1, x
2〉

〈1, 1〉
1 = x2 − 1

3
.

Then,

ProjE3
(x) =

〈1, x〉
〈1, 1〉

1 +
〈x2 − 1/3, x〉

〈x2 − 1/3, x2 − 1/3〉
(x2 − 1/3) =

1

2
+

15

16
(x2 − 1/3)

=
1

16
(3 + 15x2).
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5. (10 points) Let A be an n× n matrix such that Ak = 0 for some k ≥ 1.

(a) (4 points) Show that 0 is the only eigenvalue of A.

Solution: Suppose that λ is an eigenvalue of A with eigenvector v. Then, Av = λv.
Therefore,

0 = Akv = λkv

so λk = 0 since v 6= 0. This implies that λ = 0.

(b) (2 points) Show that if A is diagonalizable then A is the zero matrix.

Solution: By part (a), we know that the only eigenvalue of A is 0. Thus, if A is
diagonalizable, we would have

A = P0P−1 = 0.

(c) (4 points) Show that if dim Nul(A2) = dim Nul(A) then A is the zero matrix.

Solution: We claim that Rn = Nul(Ak) = Nul(A), which would imply A = 0. Sup-
pose that v 6= 0 is such that Akv = 0. Then, Ak−1v = 0 since Ak−2v is a vector in
Nul(A2) = Nul(A). If k > 2, apply the same argument to deduce that Ak−2v = 0.
Repeating this gives that Ak−`v = 0 for any ` < k. In particular, Av = 0. Thus,
proves the claim as we have shown Rn = Nul(Ak) ⊂ Nul(A).
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6. (10 points) Consider the following sets of vector functions.

(1)

{[
2et

3e2t

]
,

[
et

e2t

]}
(2)

{[
2et

2et

]
,

[
et

et

]}
(3)

{[
2et

0

]
,

[
t
t

]}
(a) (5 points) Decide whether each of the sets is linearly independent.

Solution: (1) and (3).

We first compute the Wronskians.

(1) − e3t (2) 0 (3) 2tet

This shows immediately that (1) and (3) are linearly independent since there are values
of t where their Wronskian does not vanish. The Wronskian computation itself is not

enough to deduce that (2) is linearly dependent, but it is since

[
2et

2et

]
− 2

[
et

et

]
=

[
0
0

]
.

(b) (5 points) For each of the above sets, show that the two vector functions solve a single
system x′(t) = Ax(t) for a 2× 2 matrix A or explain why this is not possible.

Solution: (1) and (2)

The Wronskian of a set of such solutions either vanishes for all t or does not vanish at
all by the Wronskian lemma. Therefore, (3) cannot be a solution to such a system.

However, (1) consists of solutions to

x′(t) =

[
1 0
0 2

]
x(t)

and (2) consists of solutions to

x′(t) =

[
1 0
0 1

]
x(t).

Note that these are just two possibilities for the matrices among infinitely many others.
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7. (10 points) Find a general solution to the following system.

x′(t) =

[
1 −6
1 −4

]
x(t) +

[
2
1

]
te−3t

Solution: We first find a homogeneous solution. To do this, we first find the eigenvalues
of A. The characteristic polynomial of A is λ2 + 3λ+ 2 = (λ+ 2)(λ+ 1) so the eigenvalues

of A are −1 and −2. An eigenvector for the eigenvalue −1 is

[
3
1

]
and an eigenvector for

the eigenvalue −2 is

[
2
1

]
. Thus, the general homogeneous solution is

xh(t) = C1e
−t
[
3
1

]
+ C2e

−2t
[
2
1

]
.

Now, we’ll find a particular solution using undetermined coefficients. We guess our partic-
ular solution has the form

xp(t) = e−3t
(
t

[
a1
a2

]
+

[
b1
b2

])
.

Plugging into the equation, we get

e−3t
(
t

[
−3a1
−3a2

]
+

[
a1 − 3b1
a2 − 3b2

])
= e−3t

(
t

[
a1 − 6a2 + 2
a1 − 4a2 + 1

]
+

[
b1 − 6b2
b1 − 4b2

])
That is, we need to solve −3a1 = a1 − 6a2 + 2,−3a2 = a1 − 4a2 + 1, a1 − 3b1 = b1 − 6b2,
and a2 − 3b2 = b1 − 4b2. We do this by row reduction.

−4 6 0 0 2
−1 1 0 0 1
1 0 −4 6 0
0 1 −1 1 0

 ∼


1 0 0 0 −2
0 1 0 0 −1
0 0 1 0 −2
0 0 0 1 −1


Thus, we get that

xp(t) = −te−3t
[
2
1

]
− e−3t

[
2
1

]
.

Finally, the general solution is

x(t) = xh(t) + xp(t) = C1e
−t
[
3
1

]
+ C2e

−2t
[
2
1

]
− te−3t

[
2
1

]
− e−3t

[
2
1

]
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8. (a) (8 points) Find the general solution to the equation

y′′ + 3y′ + 2y =
1

et + 1
.

Solution: We first find a basis of solutions to the homogeneous equation y′′+3y′+2y =
0. The auxiliary equation is r2 + 3r+ 2 = (r+ 2)(r+ 1) = 0 so a basis of homogeneous
solutions is y1(t) = e−t and y2(t) = e−2t.

We will now use variation of parameters to find the general solution. We first compute

W [y1, y2](t) =

∣∣∣∣ e−t e−2t

−e−t −2e−2t

∣∣∣∣ = −e−3t.

If we guess y(t) = v1(t)y1(t) + v2(t)y2(t) and assume v′1(t)y1(t) + v′2(t)y2(t) = 0, we
get that [

v′1(t)
v′2(t)

]
=

1

W [y1, y2](t)

[
−y2(t)f(t)
y1(t)f(t)

]
where f(t) is the nonhomogeneous term. Thus, we have v′1(t) = et

et+1 and v′2(t) = −e2t
et+1 .

Integrating, we get

v1(t) =

∫
et

et + 1
dt+ C1 =

∫
1

u
du+ C1 = ln(et + 1) + C1

with u = et + 1, and

v2(t) = −
∫

e2t

et + 1
dt+ C2 = −

∫
u− 1

u
du+ C2 = −et − 1 + ln(et + 1) + C2

again with u = et + 1. Thus, a general solution is

y(t) = C1e
−t + C2e

−2t + e−t ln(et + 1) + e−2t ln(et + 1)

where we dropped the term e−2t(et+1) = e−t+e−2t since it is a homogeneous solution.

(b) (2 points) Find the solution to the differential equation from part (a) that satisfies y(0) = 0
and y′(0) = −3 ln(2) + 1.

Solution: We have

y′(t) = −C1e
−t − 2C2e

−2t − e−t ln(et + 1) +
1

et + 1
− 2e−2t ln(et + 1) +

e−t

et + 1

so the initial conditions give C1+C2 = 2 ln(2) and−C1−2C2−3 ln(2)+1 = −3 ln(2)+1.
This implies that C1 = 4 ln(2) and C2 = −2 ln(2). Thus, the solution is

y(t) = 4 ln(2)e−t − 2 ln(2)e−2t + e−t ln(et + 1) + e−2t ln(et + 1).
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9. (a) (3 points) Find the Fourier cosine series for the function f : [0, π]→ R defined by

f(x) = (sin(x) + 1)2 + (cos(x) + 1)2 − 2 sin(x)

Solution: Using the trigonometric identity cos2(x) + sin2(x) = 1 we have

f(x) = sin2(x) + 2 sin(x) + 1 + cos2(x) + 2 cos(x) + 1− 2 sin(x) = 3 + 2 cos(x)

In other words, the Fourier cosine series of f(x) has coefficients a0 = 3, a1 = 2, and
an = 0 for n ≥ 2.

(b) (4 points) Find a solution to the following initial value problem

∂u

∂t
=
∂2u

∂x2
, 0 < x < π, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0

u(x, 0) = (sin(x) + 1)2 + (cos(x) + 1)2 − 2 sin(x)

Solution: The general solution to the heat equation with Neumann boundary condi-
tions is given by

∞∑
n=0

ane
−n2t cos(nx)

In order for the solution to satisfy the given initial condition the an must coincide with
the Fourier coefficients of (sin(x)+1)2 +(cos(x)+1)2−2 sin(x), which were computed
in part (a). It follows that the solution to the given initial value problem is

u(x, t) = 3 + 2e−t cos(x)
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(c) (3 points) Find a solution to the following (nonhomogeneous) initial value problem

∂u

∂t
=
∂2u

∂x2
+ t2, 0 < x < π, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0

u(x, 0) = (sin(x) + 1)2 + (cos(x) + 1)2 − 2 sin(x)

Solution: By the superposition principle, it suffices to find a solution to the equation
∂u
∂t = ∂2u

∂x2
+ t2 with Neumann boundary conditions and initial data u(x, 0) = 0. The

inhomogeneous term does not depend on x so we should take u to only depend on t,
that is, u(x, t) = F (t). The equation then becomes F ′(t) = t2 with initial conditions
F (0) = 0, so we get u(x, t) = F (t) = t3/3. Therefore, a solution to the given initial
value problem is

u(x, t) = 3 + 2e−t cos(x) + t3/3

Alternatively, one can guess a solution of the form

u(x, t) = a0(t) +
∞∑
n=1

an(t) cos(nx) + bn(t) sin(nx)

then plug-in and solve to reach the same result.
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10. (10 points) Consider the function f : [−π, π]→ R given by

f(x) =

{
π − x if 0 ≤ x ≤ π
π + x if − π ≤ x ≤ 0

.

(a) (6 points) Compute the Fourier series of f(x).

Solution: Since f is even, we have that bn = 0 for all n. We then compute the cosine
coefficients.

a0 =
1

2π

∫ π

−π
f(x) dx =

π

2

an =
1

π

∫ π

−π
f(x) cos(nx) dx =

2

π

∫ π

0
(π − x) cos(nx) dx

=
2

π

([π
n

sin(nx)
]π
0
−
[
x sin(nx)

n

]π
0

+
1

n

∫ π

0
sin(nx) dx

)

=
2

n2π
[− cos(nx)]π0 =

2(1− (−1)n)

πn2
=

{
0 if n is even
4
πn2 if n is odd

Therefore, the Fourier series of f(x) is

F (x) =
π

2
+
∞∑
k=0

4

π(2k + 1)2
cos((2k + 1)x).

(b) (2 points) If F is the Fourier series that you computed in part (a), compute F
(
9π
4

)
.

Solution: Since f is piecewise-differentiable F (x) = f(x) on (−π, π). Moreover, F (x) is
2π-periodic so

F

(
9π

4

)
= F

(π
4

)
= f

(π
4

)
=

3π

4

(c) (2 points) Use the Fourier series that you computed in part (a) to compute the sum 1 + 1
9 +

1
25 + 1

49 + . . .

Solution: By the convergence mentioned in the solution to the previous part, we have

π = F (0) =
π

2
+

4

π

∞∑
k=0

1

(2k + 1)2
.

Therefore,
∞∑
k=0

1

(2k + 1)2
=
π2

8
.
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Extra space.
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Extra space.
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Extra space.


