Name: \qquad

1. Inside of $\mathbb{P}_{\mathbb{C}}^{2}$, consider the scheme E_{λ} cut out by the homogeneous polynomial

$$
\begin{equation*}
f(x, y, z)=y^{2} z-x(x-z)(x-\lambda z) \quad \lambda \neq 0,1 \tag{1}
\end{equation*}
$$

1. Show E_{λ} is not isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$.
2. Show $K\left(E_{\lambda}\right)$ is not isomorphic to $K\left(\mathbb{P}_{\mathbb{C}}^{1}\right) \simeq \mathbb{C}(t)$.
3. Is $K\left(E_{\lambda}\right)$ ever isomorphic to $K\left(E_{\mu}\right)$, for $\lambda \neq \mu$?
4. 5. Inside of $\mathbb{P}_{\mathbb{C}}^{n+1}$, consider the hypersurface Q_{n} cut out by a non-degenerate quadratic form. Calculate the rational functions $K\left(Q_{n}\right)$.
1. Describe the map $Q_{n} \rightarrow \mathbb{P}_{\mathbb{C}}^{n+1}$ as resulting from applying Proj to a homomorphism $S^{*} \rightarrow R^{*}$ of $\mathbb{Z} \geq 0$-graded \mathbb{C}-algebras.
2. Suppose R^{*}, S^{*} are $\mathbb{Z}^{\geq 0}$-graded \mathbb{C}-algebras, finitely generated by elements of positive degrees. Does a homomorphism $S^{*} \rightarrow R^{*}$ of graded algebras always induce a morphism $\operatorname{Proj}\left(R^{*}\right) \rightarrow \operatorname{Proj}\left(S^{*}\right) ?$
