Name: \qquad

1. 2. Inside of $\mathbb{A}_{z \neq 0}^{2}=\operatorname{Spec}(k[x, y])$, consider the scheme $E_{z \neq 0}=\operatorname{Spec}(k[x, y] /(g))$ cut out by the polynomial

$$
\begin{equation*}
g(x, y)=y^{2}-\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) \tag{1}
\end{equation*}
$$

Write a homogenous degree 3 polynomial $f(x, y, z)$ so that setting $z=1$ recovers g.
2. Inside of $\mathbb{P}^{2}=\operatorname{Proj}(k[x, y, z])$, consider the scheme $E=\operatorname{Proj}(k[x, y, z] /(f))$. Calculate the intersection of E with the line at infinity $\mathbb{P}_{z=0}^{1}=\operatorname{Proj}(k[x, y, z] /(z))$.
3. Consider the morphism of affine schemes $\phi_{z \neq 0}: E_{z \neq 0} \rightarrow \mathbb{A}^{1}$ given on rings of functions by $k[t] \rightarrow$ $k[x, y] /(g), t \mapsto x$. Show $\phi_{z \neq 0}$ extends to a morphism $\phi: E \rightarrow \mathbb{P}^{1}$.
2. Set $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$. Define a morphism of schemes $\mathbb{P}^{1} \rightarrow E$ that restricts to an isomorphism $\mathbb{P}^{1} \backslash\{[1,0]\} \rightarrow E \backslash\{[0,0,1]\}$.
3. Set $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=0$. Define a morphism of schemes $\mathbb{P}^{1} \rightarrow E$ that restricts to an isomorphism $\mathbb{P}^{1} \backslash\{[1,0],[0,1]\} \rightarrow E \backslash\{[0,0,1]\}$.

