Name: _

1. 1. Inside of $\mathbb{A}^2_{z\neq 0} = \operatorname{Spec}(k[x, y])$, consider the scheme $E_{z\neq 0} = \operatorname{Spec}(k[x, y]/(g))$ cut out by the polynomial

$$g(x,y) = y^{2} - (x - \lambda_{1})(x - \lambda_{2})(x - \lambda_{3})$$
(1)

Write a homogenous degree 3 polynomial f(x, y, z) so that setting z = 1 recovers g.

- 2. Inside of $\mathbb{P}^2 = \operatorname{Proj}(k[x, y, z])$, consider the scheme $E = \operatorname{Proj}(k[x, y, z]/(f))$. Calculate the intersection of E with the line at infinity $\mathbb{P}^1_{z=0} = \operatorname{Proj}(k[x, y, z]/(z))$.
- 3. Consider the morphism of affine schemes $\phi_{z\neq 0}: E_{z\neq 0} \to \mathbb{A}^1$ given on rings of functions by $k[t] \to k[x,y]/(g), t \mapsto x$. Show $\phi_{z\neq 0}$ extends to a morphism $\phi: E \to \mathbb{P}^1$.
- 2. Set $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Define a morphism of schemes $\mathbb{P}^1 \to E$ that restricts to an isomorphism $\mathbb{P}^1 \setminus \{[1,0]\} \to E \setminus \{[0,0,1]\}.$

3. Set $\lambda_1 = 1, \lambda_2 = \lambda_3 = 0$. Define a morphism of schemes $\mathbb{P}^1 \to E$ that restricts to an isomorphism $\mathbb{P}^1 \setminus \{[1,0], [0,1]\} \to E \setminus \{[0,0,1]\}.$