Name: \qquad

1. For each pair of homogenous ideals $I, J \subset k[x, y, z]$, consider the intersection of $X=\operatorname{Proj}(k[x, y, z] / I)$ and $Y=\operatorname{Proj}(k[x, y, z] / J)$ inside of $\mathbb{P}_{k}^{2}=\operatorname{Proj}(k[x, y, z])$. Calculate the irreducible components of the intersection and the global functions on each irreducible component.
2. $I=(x), J=\left(x^{3}-y z^{2}\right)$.
3. $I=(y), J=\left(x^{3}-y z^{2}\right)$.
4. If k is algebraically closed and $X=\operatorname{Proj}\left(k\left[x_{0}, x_{1}, \ldots, x_{n}\right] / I\right)$ is connected and reduced (no nilpotents in sections of its structure sheaf $)$, then $\Gamma\left(X, \mathcal{O}_{X}\right) \simeq k$. But...
Calculate $\Gamma\left(X, \mathcal{O}_{X}\right)$ for the following.
5. $X=\operatorname{Proj}\left(k\left[x_{0}, x_{1}\right] /\left(x_{1}^{2}\right)\right)$.
6. $X=\operatorname{Proj}\left(\mathbb{R}\left[x_{0}, x_{1}\right] /\left(x_{0}^{2}+x_{1}^{2}\right)\right)$.
7. If $X=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right] / I\right)$ is dimension $n-1$ and $\Gamma\left(X, \mathcal{O}_{X}\right)=k\left[x_{1}, \ldots, x_{n}\right] / I$ is an integral domain, then X is cut out of $\mathbb{A}_{k}^{n}=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ by a single equation. (In a unique factorization domain, every height one prime ideal is principal.) But...
Give an example of an irreduble dimension 1 scheme $X=\operatorname{Spec}\left(k\left[x_{1}, x_{2}\right] / I\right)$ that is not cut out of $\mathbb{A}_{k}^{2}=\operatorname{Spec}\left(k\left[x_{1}, x_{2}\right]\right.$ by a single equation. (So by necessity $\Gamma\left(X, \mathcal{O}_{X}\right)$ must have nilpotents.)
