Name: _

1. Give an example of a locally ringed space that is not a scheme.

2. Give an example of a pair of locally ringed spaces (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) and a map of ringed spaces (π, π^*) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ that is *not* a map of locally ringed spaces. Can you find an example with $(X, \mathcal{O}_X) =$ $\operatorname{Spec}(R)$, $(Y, \mathcal{O}_Y) = \operatorname{Spec}(S)$ for some rings R, S?

3. Let R ⊂ C[x, y]×C[u, v] be the subring of pairs (p(x, y), q(u, v)) of polynomials such that p(0, 0) = q(0, 0).
1. Describe Spec(R) and the induced map A² ∐ A² → Spec(R).

2. Consider the ideal $I = (x, y, u, v) \subset R$. Calculate the sections $\mathcal{O}_{\operatorname{Spec}(R)}(\operatorname{Spec}(R) \setminus V(I))$.

3. Is $\mathcal{O}_{\text{Spec}(R)}(\text{Spec}(R) \setminus V(I))$ a localization of R with respect to some multiplicative subset?