Name: _

1. Let \mathcal{F} be the sheaf of abelian groups on \mathbb{R} that assigns to $U \subset \mathbb{R}$ the abelian group of continuous functions $\sigma: U \to \mathbb{R}$ that vanish on some neighborhood of $0 \in \mathbb{R}$ whenever $0 \in U$. Calculate the stalk of \mathcal{F} at $0 \in \mathbb{R}$.

2. Let \mathcal{F} be the presheaf of abelian groups on \mathbb{R} that assigns to $U \subset \mathbb{R}$ the abelian group of continuous, bounded functions $\sigma : U \to \mathbb{R}$.

Explain why \mathcal{F} is not a sheaf.

3. Let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ be the circle.

Let $f : \mathbb{R} \to S^1$ be the universal covering $f(x) = \exp(2\pi i x)$. Let \mathcal{F} be the sheaf of sets on S^1 that assigns to $U \subset S^1$ the set of continuous sections of f over U. (A section of f over U is a map $\sigma : U \to \mathbb{R}$ such that $f \circ \sigma$ is the identity of U.) Set $U_{\alpha} = S^1 \setminus \{1\}, U_{\beta} = S^1 \setminus \{-1\}.$

Calculate the diagram of restriction maps

$$\mathcal{F}(S^1) \longrightarrow \mathcal{F}(U_{\alpha}) \times \mathcal{F}(U_{\beta}) \Longrightarrow \mathcal{F}(U_{\alpha} \cap U_{\beta})$$

and verify that it exhibits $\mathcal{F}(S^1)$ as an equalizer.